(1_1/10)×(1-1/11)×(1-1/12)×(1-1×1/13)
tính nhanh
1/10*11+1/11*12+1/12*13+1/13*14+..........+1/78*79
8/7*9+8/9*11+8/11*13+........+8/133*135
12/8*11+12/11*14+12/14*17+.........+12/503*506
1/4*7+1/7*10+1/10*13+1/13*16+........+1/391*394
4/5*8+4/8*11+4/11*14+.........+4/602*605
1+1/3+1/6+1/6+1/10+1/15+..........+1/820
các bạn giải cho mình bài này với ạ mình đang rất cần , huhu
là sao bạn NGUYỄN HỮU CHUNG
\(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+\frac{1}{13.14}+........+\frac{1}{78.79}\)
\(=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+............+\frac{1}{78}-\frac{1}{79}\)
\(=\frac{1}{10}-\frac{1}{79}=\frac{69}{790}\)
Tính nhanh
a) 1/10*11 + 1/11*12 + 1/12*13 + 1/13*14 +.........+ 1/78*79
b) 8/7*9 + 8/9*11 + 8/11*13 + 8/13*14 +............+ 8/133*135
c) 12/8*11 + 12/11*14 + 12/14*17 +.........+ 12/503*506
d) 1/4*7 + 1/7*10 + 1/10*13 + 1/13*16 +........+ 1/391*394
e) 4/5*8 + 4/8*11 + 4/11*14 + 4/14*17 +.........+ 4/602*605
g) 1 + 1/3 + 1/6 + 1/10 + 1/15 +...........+ 1/802
Các bạn làm bài tập này giúp mình với ạ
bạn nào làm xong trước và đúng thì mình tick cho nhé
Dấu này * là dấu nhân
Một năm rồi không có ai trả lời à
THấy cx thương nhưng mk nhìn cái đề thì dài thật cx khó có ai có thời gian mà giải
Tính nhanh:
A = 1/10 + -1/11 + 1/12 + -1/13 + 1/14 + -1/15 + 1/16 +1/15 + -1/14 + 1/13 + -1/12 + 1/11 + -1/10
(1/10+-1/10)+(1/11+-1/11)+(1/12+-1/12)+(-1/13+1/13)+(-1/14+1/14)+(-1/15+1/15)+1/16
=0 + 0 +0 + 0 +0 +0 +1/16
=1/16
TÍNH NHANH
a) 1/10*11+1/11*12+1/12*13+1/13*14+........+1/78*79
b) 8/7*9+8/9*11+8/11*13+8/13*15+.......+8/133*135
c) 12/8*11+12/11*14+12/14*17+.........+12/503*506
d) 1/4*7+1/7*10+1/10*13+1/13*16+..........+1/391*394
e) 4/5*8+4/8*11+4/11*14+4/14*17+.........+4/602*605
g) 1+1/3+1/6+1/10+1/15+........+1/802
DẤU NÀY * LÀ DẤU NHÂN
CÁC BẠN GIẢI GIÚP MÌNH VỚI Ạ
MÌNH CHỈ CÒN KHOẢNG 15 PHÚT NỮA THÔI CẦU XIN CÁC BẠN ĐÓ
a) = 1/10 - 1/11 + 1/11 -1/12 + 1/12 - 1/13 +1/13 1/14 +...+ 1/78 - 1/79
= 1/10 - 1/79
= máy tính ok
mấy câu khác bn làm tương tự là đc nhưng nhớ nhanh thêm khoảng cách giữa các mẫu nha
a)\(\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{78.79}=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{78}-\frac{1}{79}=\frac{1}{10}-\frac{1}{79}=\frac{69}{790}\)
b) \(\frac{8}{7.9}+\frac{8}{9.11}+...+\frac{8}{133.135}=4\left(\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{133.135}\right)\)
\(=4\left(\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{133}-\frac{1}{135}\right)=4\left(\frac{1}{7}-\frac{1}{135}\right)=4.\frac{128}{945}=\frac{456}{945}\)
c) \(\frac{12}{8.11}+\frac{12}{11.14}+...+\frac{12}{503.506}=4\left(\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{503.506}\right)\)
\(=4\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{503}-\frac{1}{506}\right)=4\left(\frac{1}{8}-\frac{1}{506}\right)=\frac{249}{506}\)
d) \(\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{391.394}=\frac{1}{3}\left(\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{391.394}\right)\)
\(=\frac{1}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{391}-\frac{1}{394}\right)=\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{394}\right)=\frac{1}{3}.\frac{195}{788}=\frac{65}{788}\)
e) \(\frac{4}{5.8}+\frac{4}{8.11}+...+\frac{4}{602.605}=\frac{4}{3}.\left(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{602.605}\right)\)
\(=\frac{4}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{602}-\frac{1}{605}\right)=\frac{4}{3}\left(\frac{1}{5}-\frac{1}{605}\right)=\frac{4}{3}.\frac{24}{121}=\frac{32}{121}\)
g) Sửa đề\(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{820}=2\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{1640}\right)=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{40.41}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{40}-\frac{1}{41}\right)=2\left(1-\frac{1}{41}\right)=2.\frac{40}{41}=\frac{80}{41}\)
Bài làm:
a) \(\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{78.79}\)
\(=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{78}-\frac{1}{79}\)
\(=\frac{1}{10}-\frac{1}{79}=\frac{69}{790}\)
b) \(\frac{8}{7.9}+\frac{8}{9.11}+...+\frac{8}{133.135}\)
\(=4\left(\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{133.135}\right)\)
\(=4\left(\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{133}-\frac{1}{135}\right)\)
\(=4\left(\frac{1}{7}-\frac{1}{135}\right)\)
\(=4.\frac{128}{945}=\frac{512}{945}\)
c) \(\frac{12}{8.11}+\frac{12}{11.14}+...+\frac{12}{503.506}\)
\(=4\left(\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{503.506}\right)\)
\(=4\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{503}-\frac{1}{506}\right)\)
\(=4\left(\frac{1}{8}-\frac{1}{506}\right)\)
\(=4.\frac{249}{2024}=\frac{249}{506}\)
d) \(\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{391.394}\)
\(=\frac{1}{3}\left(\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{391.394}\right)\)
\(=\frac{1}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{391}-\frac{1}{394}\right)\)
\(=\frac{1}{3}\left(\frac{1}{4}-\frac{1}{394}\right)\)
\(=\frac{1}{3}.\frac{195}{788}=\frac{65}{788}\)
e) \(\frac{4}{5.8}+\frac{4}{8.11}+...+\frac{4}{602.605}\)
\(=\frac{4}{3}\left(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{602.605}\right)\)
\(=\frac{4}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{602}-\frac{1}{605}\right)\)
\(=\frac{4}{3}\left(\frac{1}{5}-\frac{1}{605}\right)\)
\(=\frac{4}{3}.\frac{24}{121}=\frac{32}{121}\)
g) Phải sửa \(\frac{1}{802}\) thành \(\frac{1}{820}\) nhé
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{820}\)
\(=1+\frac{1}{1.3}+\frac{1}{2.3}+\frac{1}{2.5}+...+\frac{1}{41.20}\)
\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{40.41}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{40}-\frac{1}{41}\right)\)
\(=2\left(1-\frac{1}{41}\right)\)
\(=2.\frac{40}{41}=\frac{80}{41}\)
Tính giá trị của biểu thức:
A=\(\dfrac{1}{9}\).\(\dfrac{1}{10}\)+\(\dfrac{1}{10}\).\(\dfrac{1}{11}\)+\(\dfrac{1}{11}\).\(\dfrac{1}{12}\)+\(\dfrac{1}{12}\).\(\dfrac{1}{13}\)+\(\dfrac{1}{13}\).\(\dfrac{1}{14}\)+\(\dfrac{1}{14}\).\(\dfrac{1}{15}\)
Ta có: A\(=\dfrac{1}{9}.\dfrac{1}{10}+\dfrac{1}{10}.\dfrac{1}{11}+\dfrac{1}{11}.\dfrac{1}{12}+\dfrac{1}{12}.\dfrac{1}{13}+\dfrac{1}{13}.\dfrac{1}{14}+\dfrac{1}{14}.\dfrac{1}{15}\)
\(=\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{15}\)
\(=\dfrac{1}{9}-\dfrac{1}{15}=\dfrac{2}{45}\)
\(A=\dfrac{1}{9}.\dfrac{1}{10}+\dfrac{1}{10}.\dfrac{1}{11}+\dfrac{1}{11}.\dfrac{1}{12}+\dfrac{1}{12}.\dfrac{1}{13}+\dfrac{1}{13}.\dfrac{1}{14}+\dfrac{1}{14}.\dfrac{1}{15}\)
\(=\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{15}\)
\(=\dfrac{1}{9}-\dfrac{1}{15}\)
\(=\dfrac{2}{45}\)
-Chúc bạn học tốt-
A = \(\dfrac{1}{9}.\dfrac{1}{10}+\dfrac{1}{10}.\dfrac{1}{11}+\dfrac{1}{11}.\dfrac{1}{12}+\dfrac{1}{12}.\dfrac{1}{13}+\dfrac{1}{13}.\dfrac{1}{14}+\dfrac{1}{14}.\dfrac{1}{15}\)
= \(\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}+\dfrac{1}{12.13}+\dfrac{1}{13.14}+\dfrac{1}{14.15}\)
= \(\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+...+\dfrac{1}{14}-\dfrac{1}{15}\)
= \(\dfrac{1}{9}-\dfrac{1}{15}\)
= \(\dfrac{2}{45}\)
1/10×11+1/11×12+1/12×13+...1/49×50
tính tổng: s=(1/10*11)+(1/11*12)+(1/12*13)+...+(1/99*100)
\(S=\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{99.100}\)
\(\Rightarrow S=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow S=\frac{1}{10}-\frac{1}{100}\)
\(\Rightarrow S=\frac{99}{100}\)
\(S=\frac{1}{10.11}+\frac{1}{11.12}+....+\frac{1}{99.100}\)
\(=\frac{11-10}{10.11}+\frac{12-11}{11.12}+...+\frac{100-99}{99.100}\)
\(=\frac{11}{10.11}-\frac{10}{10.11}+\frac{12}{11.12}-\frac{11}{11.12}+....+\frac{100}{99.100}-\frac{99}{99.100}\)
\(=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+....+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{10}-\frac{1}{100}=\frac{9}{100}\)
\(\frac{1}{\sqrt{16}-\sqrt{15}}-\frac{1}{\sqrt{15}-\sqrt{14}}+\frac{1}{\sqrt{14}-\sqrt{13}}-\frac{1}{\sqrt{13}-\sqrt{12}}+\frac{1}{\sqrt{12}-\sqrt{11}}-\frac{1}{\sqrt{11}-\sqrt{10}}+\frac{1}{\sqrt{10}-\sqrt{9}}\)
Với n > 0 Ta có:
\(\frac{1}{\sqrt{n+1}-\sqrt{n}}=\frac{\sqrt{n+1}+\sqrt{n}}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\sqrt{n+1}+\sqrt{n}}{n+1-n}\)
\(=\sqrt{n+1}+\sqrt{n}\)
\(\Rightarrow\frac{1}{\sqrt{16}-\sqrt{15}}-\frac{1}{\sqrt{15}-\sqrt{14}}+...+\frac{1}{\sqrt{10}-\sqrt{9}}\)
\(=\sqrt{16}+\sqrt{15}-\sqrt{15}-\sqrt{14}+...+\sqrt{10}+\sqrt{9}\)
\(\sqrt{16}+\sqrt{9}=3+4=7\)
Tính : a 1/10×11 + 1/ 11×12 +1/12×13 + .... +1/99×100
b 1/ 1×3 + 1/ 3 ×5 +1/5×7 + .... + 1/97×99