So sánh:
1/3+1/30+1/32+1/35+1/45+1/47+1/50 với 1/2
CMR:1/3+ 1/30+ 1/32+ 1/35+ 1/45+ 1/47+1/50 <1/2
1/3+1/30+1/32+1/35+1/45 +1/47 +1/50 < 7/14
1/3+1/30+1/32+1/35+1/45 +1/47 +1/50 <1/14 +1/14 +1/14 +1/14 +1/14 +1/14 +1/14
dù 1/3>1/14 nhưng :1/30<1/14 1/32<1/14 ;1/35<1/14 ;1/45<1/14 ;1/47<1/14 ;1/50<1/14
nên: 1/3+1/30+1/32+1/35+1/45 +1/47 +1/50 < 1/2
CMR:1/3+1/30+1/32+1/35+1/45+1/47+1/50<1/2
Ta có: \(\frac{1}{32}< \frac{1}{30};\frac{1}{35}< \frac{1}{30}\)
=> \(\frac{1}{30}+\frac{1}{32}+\frac{1}{35}< \frac{1}{30}+\frac{1}{30}+\frac{1}{30}=\frac{1}{10}\)
\(\frac{1}{47}< \frac{1}{45};\frac{1}{50}< \frac{1}{45}\)
=> \(\frac{1}{45}+\frac{1}{47}+\frac{1}{50}< \frac{1}{45}+\frac{1}{45}+\frac{1}{45}=\frac{3}{45}=\frac{1}{15}\)
=> \(\frac{1}{3}+\frac{1}{30}+\frac{1}{32}+\frac{1}{35}+\frac{1}{45}+\frac{1}{50}< \frac{1}{3}+\frac{1}{10}+\frac{1}{15}=\frac{1}{2}\)
C/m rằng; 1/3 + 1/30 + 1/32 + 1/35 + 1/45 + 1/47 + 1/50 < 1/2
Ta có : 1/3 < 1/2
1/30 < 1/2
1/32 < 1/2
1/35 < 1/2
1/45 < 1/2
1/47 < 1/2
1/50 < 1/2
=> 1/3 + 1/30 + 1/32 + 1/35 + 1/45 + 1/47 + 1/50 < 1/2
@Ác Quỷ Bóng Tối
\(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)
\(\Rightarrow\)\(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{7}{14}\)
\(\Rightarrow\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{14}+\dfrac{1}{14}+\dfrac{1}{14}+\dfrac{1}{14}+\dfrac{1}{14}+\dfrac{1}{14}+\dfrac{1}{14}\)
Dù \(\dfrac{1}{3}>\dfrac{1}{14}\) nhưng:
\(\dfrac{1}{30}< \dfrac{1}{14}\)
\(\dfrac{1}{32}< \dfrac{1}{14}\)
\(\dfrac{1}{35}< \dfrac{1}{14}\)
\(\dfrac{1}{45}< \dfrac{1}{14}\)
\(\dfrac{1}{47}< \dfrac{1}{14}\)
\(\dfrac{1}{50}< \dfrac{1}{14}\)
\(\Rightarrow\) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)
Chứng minh rằng 1/3 + 1/30 + 1/32 + 1/35 +1/45 + 1/47+ 1/50 < 1/2
Ta có : 1/2>1/3
1/2>1/30
1/2>1/32
1/2>1/35
1/2>1/45
1/2>1/47
1/2>1/50
=>(1/3+1/30+1/32+1/35+1/45+1/47+1/50)<(1/2+1/2+1/2+1/2+1/2+1/2+1/2)
=>(1/3+1/30+1/32+1/35+1/45+1/47+1/50)<1/2
\(CMR:\frac{1}{3}+\frac{1}{30}+\frac{1}{32}+\frac{1}{45}+\frac{1}{47}+\frac{1}{50}< \frac{1}{2}\)
Chứng minh rằng\(\frac{1}{3}\)+ \(\frac{1}{30}\) + \(\frac{1}{32}\) + \(\frac{1}{35}\) + \(\frac{1}{45}\) + \(\frac{1}{47}\) + \(\frac{1}{50}\) < \(\frac{1}{2}\)
1/3+1/30+1/32+1/35+1/45 +1/47 +1/50 < 7/14
1/3+1/30+1/32+1/35+1/45 +1/47 +1/50 <1/14 +1/14 +1/14 +1/14 +1/14 +1/14 +1/14
dù 1/3>1/14 nhưng :1/30<1/14 1/32<1/14 ;1/35<1/14 ;1/45<1/14 ;1/47<1/14 ;1/50<1/14
nên: 1/3+1/30+1/32+1/35+1/45 +1/47 +1/50 < 1/2
1/3+1/30+1/32+1/35+1/45 +1/47 +1/50 < 7/14
1/3+1/30+1/32+1/35+1/45 +1/47 +1/50 <1/14 +1/14 +1/14 +1/14 +1/14 +1/14 +1/14
dù 1/3>1/14 nhưng :1/30<1/14 1/32<1/14 ;1/35<1/14 ;1/45<1/14 ;1/47<1/14 ;1/50<1/14
nên: 1/3+1/30+1/32+1/35+1/45 +1/47 +1/50 < 1/2
vì nếu 2 số có chung một tử số thì số nào có mẫu số lớn hơn thì số đó lớn hơn
So sánh 1/3+1/32+1/37+1/39+1/47+1/53+1/61 và 1/2
Cho S = 1/30 + 1/31 + 1/32 + 1/33 + ... + 1/49 . So sánh S với 2/3
Bài 1: Tìm x
a) (2x+5)^2=196
b) (-3x+1)^2=25
c) ( x+1)^3=-27
d) (x^2-9) . (x^2+1)=0
Bài 2 : Tính nhanh
a) -25 .68+(-34).(-256)
b) -35(45-74)-74 . (35+45)
c) (-2)^5 . 30 +(-2)^5 . 69+(-32)
d) 25.(32+47)-32 . ( 25+47)
CẦN GẤP !!!!!!!! AI NHANH TICK CHO...