Có tồn tại số dương a và b khác nhau sao cho :
\(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)
Cho các số a,b,c,d nguyên dương đôi một khác nhau và thỏa mãn : \(\frac{2a+b}{a+b}+\frac{2b+c}{b+c}+\frac{2c+d}{c+d}+\frac{2d+a}{d+a}\)=6 . CM: A= abcd là số chính phương với abcd là số có bốn chữ số
Câu hỏi nhóm BGS số 3 - lớp 8:
Cho 4 số nguyên dương a,b,c,d trong đó tổng ba số bất kì chia cho số còn lại đều có thương là một số nguyên khác 1. Chứng minh rằng trong bốn số a, b, c, d tồn tại hai số bằng nhau.
cho 2016 số nguyên dương a1; a2; a3; ...... ;a2016 thõa mãn
\(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+......+\frac{1}{a_{2016}}\)= 300
chứng minh rằng trong 2016 số đã cho tồn tại ít nhất hai số bằng nhau
có hay không tồn tại các số a,b,c thoả mãn 1/a+1/b+1/c=1/2 và a+b+c=abc
*P/S: CẦN GẤP!
mi tích tau tau tích mi xong tau trả lời nka
việt nam nói là làm
1. Tìm số ba chữ số abc biết 1abc chia hết cho abc dư 3 => abc=...
2. Biết 123123 = k.(-123) => Vậy k=
3. Tìm số x nguyên sao cho phân số \(\frac{-3x-15}{-2x}\)có giá trị = 3 => Trả lời x = ....
4. Số các số chẵn có các chữ số khác nhau lập từ các chữ số 1;2;3;4 là ....
5. Tìm hai số nguyên dương a b biết \(\frac{a}{b}\)= \(\frac{10}{25}\) và BCNN ( a b ) = 100 => Trả lời ( a;b) ............... ( nhập giá trị theo thứ tự cách nhau bởi dấu " ; "
Like Nhaa Trả Lời ĐI
Ba số a,b,c khác nhau và khác số 0 thỏa mãn đk
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\).Tính giá trị biểu thức \(A=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{b+c}=\frac{1}{2}\\\frac{b}{a+c}=\frac{1}{2}\\\frac{c}{a+b}=\frac{1}{2}\end{cases}\Rightarrow\hept{\begin{cases}b+c=2a\\a+c=2b\\a+b=2c\end{cases}}}\)
Thay vào biểu thức A ta có :
\(A=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)
Vậy..........
cho a1 , a2,.., a2017 là các số tự nhiên thỏa mãn \(\frac{1}{a_1^2}+\frac{1}{a_2^2}+...+\frac{1}{a_{2017}^2}>4\)chứng minh rằng trong 2017 số trên tồn tại ít nhất 4 số bằng nhau
Đề sai rồi. Chỉ cần \(3\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}\right)=\frac{49}{12}>4\) thì cần gì tới 4 số phải bằng nhau nữa.
xin đính chính lại là VT > 5. Bạn giúp mình bài này với
Sửa đề theo như người đăng thì VT > 6
Giả sử trong 2017 số đó không có 4 số nào bằng nhau thì ta có:
\(\frac{1}{a_1^2}+\frac{1}{a_2^2}+...+\frac{1}{a_{2017}}\le3\left(\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{672^2}\right)+\frac{1}{673^2}\)
\(< 3\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{671.672}\right)+\frac{1}{673^2}\)
\(=3\left(1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{671}-\frac{1}{672}\right)+\frac{1}{673^2}\)
\(=3\left(1+1-\frac{1}{672}\right)+\frac{1}{673^2}< 6\)
Vậy trong 2017 số có ít nhất 4 số bằng nhau.
cho 3 số tự nhiên a,b,c khác 0 và khác nhau thỏa mãn đk:\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\).tính gtrị bthức:
p=\(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
cho 3 số tự nhiên a,b,c khác 0 và khác nhau thỏa mãn đk:ab+c =ba+c =ca+b .tính gtrị bthức:
p=b+ca +a+cb +a+bc
cho a,b,c khác 0,a khác b,b.c khác 1 và a.c khác 1
CM:\(\frac{a^{2-bc}}{a\left(1-bc\right)}=\frac{b^{2-ac}}{b\left(1-ac\right)}\Leftrightarrow a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)