Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khương Vũ Phương Anh
Xem chi tiết
nguyen thi thu uyen
Xem chi tiết
Lục Khả Vi
Xem chi tiết
Đặng Minh Triều
31 tháng 5 2019 lúc 17:35

vế phải < \(2.\left(\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+...+\frac{1}{2\sqrt{225}}\right)\)

<\(2\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{224}+\sqrt{225}}\right)\)

\( =2.\left(-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{224}+\sqrt{225}\right)\)

=\(2.\left(-1+\sqrt{225}\right)=2.14=28\)

Trúc Mai Huỳnh
Xem chi tiết
Đinh Diệp
Xem chi tiết
Trương Thị Anh Quỳnh
2 tháng 6 2019 lúc 1:08

undefined

titanic
Xem chi tiết
gokubluessj1
12 tháng 7 2017 lúc 13:45

Sorry mới lớp 6 chưa học

thông cảm 

no chửi 

alibaba nguyễn
13 tháng 7 2017 lúc 8:55

Ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}.\left(\sqrt{n}+\sqrt{n+1}\right)}\)

\(=\frac{1}{\sqrt{n\left(n+1\right)}.\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Thế vào bài toán ta được

\(A=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{225\sqrt{224}+224\sqrt{225}}\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{224}}-\frac{1}{\sqrt{225}}\)

\(=1-\frac{1}{\sqrt{225}}=1-\frac{1}{15}=\frac{14}{15}\)

le phan anh
Xem chi tiết
lê thị mỹ giang
Xem chi tiết
kagamine rin len
Xem chi tiết