cho B=\(\frac{8}{9}+\frac{24}{25}+\frac{48}{49}+...+\frac{200.202}{201^2}CM\) \(B>99,75\)
\(B=\frac{8}{9}+\frac{24}{25}+\frac{48}{49}+....+\frac{200.202}{201^2}>99,75\)
Cho B = \(\frac{8}{9}+\frac{24}{25}+\frac{48}{49}+...+\frac{200.202}{201^2}\) Chứng minh B > 99,75
Cho B =\(\frac{8}{9}+\frac{24}{25}+\frac{48}{49}+.....\frac{200.202}{201^2}\)
CMR B >99,75
Cho B = \(\frac{8}{9}+\frac{24}{25}+\frac{48}{49}+.....+\frac{200.202}{201^2}\) Chứng minh : B > 99,75
cho B = \(\frac{8}{9}+\frac{24}{25}+\frac{48}{49}+....+\frac{200.202}{201^2}\)chứng minh B > 99,75
Cho \(B=\frac{8}{9}+\frac{24}{25}+\frac{48}{49}+...+\frac{200.202}{201^2}\)Chứng minh: \(B>99,75\)
Cho \(B=\frac{8}{9}+\frac{24}{25}+...+\frac{200.202}{201^2}\). Chứng minh: \(B>99,75\)
Ta có :
\(B=\frac{8}{9}+\frac{24}{25}+...+\frac{200.202}{201^2}\)
\(B=\frac{8}{3^2}+\frac{24}{5^2}+...+\frac{200.202}{201^2}\)
\(B=\frac{3^2-1}{3^2}+\frac{5^2-1}{5^2}+...+\frac{201^2-1}{201^2}\)
\(B=\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{5^2}{5^2}-\frac{1}{5^2}+...+\frac{201^2}{201^2}-\frac{1}{201^2}\)
\(B=1-\frac{1}{3^2}+1-\frac{1}{5^2}+...+1-\frac{1}{201^2}\)
\(B=\left(1+1+...+1\right)+\left(-\frac{1}{3^2}-\frac{1}{5^2}-...-\frac{1}{201^2}\right)\)
\(B=100-\left(\frac{1}{3^2}+\frac{1}{5^2}+...+\frac{1}{201^2}\right)\)
Lại có :
\(\frac{1}{3^2}+\frac{1}{5^2}+...+\frac{1}{201^2}>\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{201.203}\)
\(\Leftrightarrow\)\(\frac{2}{3^2}+\frac{2}{5^2}+...+\frac{2}{201^2}>\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{201.203}\)
\(\Leftrightarrow\)\(\frac{2}{3^2}+\frac{2}{5^2}+...+\frac{2}{201^2}>\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{201}-\frac{1}{203}\)
\(\Leftrightarrow\)\(\frac{2}{3^2}+\frac{2}{5^2}+...+\frac{2}{201^2}>\frac{1}{3}-\frac{1}{203}\)
\(\Leftrightarrow\)\(\frac{2}{3^2}+\frac{2}{5^2}+...+\frac{2}{201^2}>\frac{200}{609}\)
Suy ra : \(2B=200-\left(\frac{2}{3^2}+\frac{2}{5^2}+...+\frac{2}{201^2}\right)>200-\frac{200}{609}\)
\(\Leftrightarrow\)\(B>100-\frac{100}{609}\)
\(\Leftrightarrow\)\(B>\frac{60800}{609}=99,\left(835...99\right)>99,75\)
Vậy \(B>99,75\)
Chúc bạn học tốt ~
Bạn có thể giải thích tại sao lại \(2B=200-\left(\frac{2}{3^2}+\frac{2}{5^2}+...+\frac{2}{201^2}\right)>200-\frac{200}{609}\) từ đoạn đó xuống dưới đc ko
cho B=\(\frac{1}{4^2}\)+ \(\frac{1}{6^2}\)+ \(\frac{1}{8^2}\)+....+\(\frac{1}{2006^2}\). CM: B<\(\frac{334}{2007}\)
Cho C= \(\frac{8}{9}\)+ \(\frac{24}{25}\)+ \(\frac{48}{49}\)+....+ \(\frac{200.202}{201^2}\). CM: C>99,75
Chứng minh: \(\frac{8}{9}+\frac{24}{25}+\frac{48}{49}+........+\frac{200.202}{201^2}>99,75\)
Các bạn ơi giải nhanh và chính xác hộ mình nhé! Mình đang cần rất gấp! Ai giải chính xác và nhanh mình sẽ tick cho! *.* ^.^ ^-^ *-*