cho x+y =1 tính A= x^3+y^3+3xy B=2(x^3+y^3)-3(x^2+y^2)
Cho x+y=2
Tính A=x^3+y^3+3xy*(x+y)
B=x^2+2xy+y^2+4
C=x^3+y^3+3xy*(x+y)+7*(x+y)
A=x^3 + y^3 + 3xy(x+y)
=x+3x^y+3xy^2+y^3
=(x+y)^3=2^3=8
B=x^2+2xy+y^2+4
=(x+y)^2+4=4+4=8
C=x^3+y^3+3xy(x+y)+7(x+y)
=(x+y)^3+7(x+y)
=2^3+7.2
=8+14=22
Bài 1: a) Cho x+y = 1 Tính x^3 +y^3 + 3xy
b) Cho x-y = 1 Tính x^3 - y^3 -3xy
c) Cho q+b =1 Tính A = a^3 + b^3 + 3ab. ( a^2 +b^2 ) + ba^2 . b^2 . ( a+b)
d) Cho x+y = 3 Tính B = x^2 + 2xy + y^2 - 4x - 4y + 1
a, \(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy=x^2-xy+y^2+3xy=x^2+2xy+y^2=\left(x+y\right)^2=1\)
b, tương tự a
c, Sửa đề Cho a+b=1. Tính giá trị của các biểu thứ :A= a3+b3+3ab(a2+b2)+ 6a2b2(a+b)
\(A=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)
Thay a+b=1 vào A ta có:
\(A=1-3ab+3ab\left(1-2ab\right)+6a^2b^2\)
\(=1-3ab+3ab-6a^2b^2+6a^2b^2=1\)
d. \(B=x^2+2xy+y^2-4x-4y+1=\left(x+y\right)^2-4\left(x+y\right)+1=\left(x+y\right)\left(x+y-4\right)+1\)
Thay x+y=3 vào B ta có:
\(B=3\left(3-4\right)+1=3.\left(-1\right)+1=-3+1=-2\)
a) Cho x+y=1.Tính A=x3+y3+3xy
b) Cho x-y=1.Tính B=x3-y3-3xy
c) Cho a+b=1.Tính M=a3+b3+3ab(a2+b2)+6a2b2(a+b)
d) Cho x+y=2 và x2+y2=10.Tính x3+y3
\(A=x^3+y^3+3xy=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1+0=1\)
\(B=\left(x-y\right)^3+3xy\left(x-y\right)-3xy=1\)
\(c,M=a^2-ab+b^2+3ab\left(a^2+b^2\right)+6a^2b^2=3ab\left(a^2+2ab+b^2\right)+a^2-ab+b^2\)
\(=3ab+a^2-ab+b^2=\left(a+b\right)^2=1\)
\(x+y=2;x^2+y^2=10\text{ do đó:}xy=-3\text{ nên }\left(x-y\right)^2=16\text{ do đó: }x-y=4\text{ hoặc }x-y=-4\)
\(\text{giải ra được:}x=3;y=-1\text{ hoặc ngược lại nên }x^3+y^3=-26\text{ hoặc }26\)
A = x3 + y3 + 3xy
= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 + 3xy
= ( x3 + 3x2 + 3xy2 + y3 ) - ( 3x2y + 3xy - 3xy )
= ( x + y )3 - 3xy( x + y - 1 )
= 13 - 3xy( 1 - 1 )
= 13 - 3xy.0
= 1 - 0 = 1
Vậy A = 1
b) B = x3 - y3 - 3xy
= x3 - 3x2y + 3xy2 - y3 + 3x2y - 3xy2 - 3xy
= ( x3 - 3x2y + 3xy2 - y3 ) + ( 3x2y - 3xy2 - 3xy )
= ( x - y )3 + 3xy( x - y - 1 )
= 13 + 3xy( 1 - 1 )
= 1 + 3xy.0
= 1 + 0 = 1
Vậy B = 1
M = a3 + b3 + 3ab( a2 + b2 ) + 6a2b2( a + b )
= ( a + b )( a2 - ab + b2 ) + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )
= ( a + b )[ ( a + b )2 - 3ab ] + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )
= 1.( 1 - 3ab ) + 3ab( 1 - 2ab ) + 6a2b2.1
= 1 - 3ab + 3ab - 6a2b2 + 6a2b2
= 1
Vậy M = 1
d) x + y = 2
⇔ ( x + y )2 = 4
⇔ x2 + 2xy + y2 = 4
⇔ 10 + 2xy = 4 ( gt x2 + y2 = 10 )
⇔ 2xy = -6
⇔ xy = -3
x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2
= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )
= ( x + y )3 - 3xy( x + y )
= 23 - 3.(-3).(2)
= 8 + 18 = 26
Tính gt của biểu thức:
A. Cho x+y=1. Tính x^3+y^3+3xy
B. Cho x-y=1. Tính x^3-y^3-3xy
C. Cho a+b =1. Tính M= a^3+b^3+3ab(a^2+b^2)+6a^2b^2(a+b)
D. Cho x+y= 2 và x^2+y^2=10. Tính x^3+y^3
Các bài này đưa về dạng Hằng đẳng thức là được . Làm ra dài lắm bạn ạ !
A. \(x+y=1\Rightarrow\left(x+y\right)^3=1\Rightarrow x^3+3x^2y+3xy^2+y^3=1\)
\(\Rightarrow x^3+3xy\cdot\left(x+y\right)+y^3=1\)
\(\Rightarrow x^3+3xy+y^3=1\)
B. \(x-y=1\Rightarrow\left(x-y\right)^3=1\Rightarrow x^3-3x^2y+3xy^2-y^3=1\)
\(\Rightarrow x^3-3xy\cdot\left(x-y\right)-y^3=1\)
\(\Rightarrow x^3-3xy-y^3=1\)
C. \(M=a^3+b^3+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)
\(M=a^3+b^3+3ab\left(1-2ab\right)+6a^2b^2=a^3+b^3+3ab-6a^2b^2+6a^2b^2\)
\(M=a^3+b^3+3ab=1\)(Theo hệ quả câu A).
D. Từ \(x+y=2\Rightarrow\left(x+y\right)^2=4\Rightarrow x^2+y^2+2xy=4\Rightarrow10+2xy=4\Rightarrow xy=-3\)
Mà, \(\left(x+y\right)^3=x^3+y^3+3xy\left(x+y\right)\)
\(\Leftrightarrow2^3=x^3+y^3+3\left(-2\right)\cdot2\Leftrightarrow x^3+y^3=8+12=20\)
b1 Cho x+y=-1 và xy=-12 tính gt của B:
a,A=x^2+2xy+y^2
b,B=x^2+y^2
c,C=x^3+3x^2y+3xy^2+y^3
d,D=x^3+y^3
b2 cho x-y=-3 và xy=10 tínhN
M=x^2-2xy+y^2
N=x^2+y^2
P=x^3-3x^2y+3xy^2-y^3
Q=x^3-y^3
Bài 2:
\(M=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)
\(N=x^2+y^2=\left(x-y\right)^2+2xy=9+2.10=29\)
\(P=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)
\(Q=x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=\left(-3\right)^3+3.10.\left(-3\right)=-117\)
Bài 1:
a) \(A=x^2+2xy+y^2=\left(x+y\right)^2=\left(-1\right)^2=1\)
b) \(B=x^2+y^2=\left(x+y\right)^2-2xy=\left(-1\right)^2-2.\left(-12\right)=25\)
c) \(C=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=\left(-1\right)^3=-1\)
d) \(D=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-1\right)^3-3.\left(-12\right).\left(-1\right)=-37\)
a) Cho x + y = 1. Tính A = x3 + y3 + 3xy
b) Cho x - y = 1. Tính B = x3 - y3 - 3xy
c) Cho x + y = 2 và x2 + y2 = 10. Tính C = x3 + y3
d) Cho x + y = 1. Tính D = x3 + y3 + 3xy. (x2 + y2) + 6x2y2. (x + y)
a) Ta có: A = x3 + y3 + 3xy = (x + y)(x2 - xy + y2) + 3xy = 1. (x2 - xy + y2) + 3xy = x2 - xy + y2 + 3xy = x2 + 2xy + y2 = (x + y)2 = 12 = 1
b)Ta có: B = x3 - y3 - 3xy = (x - y)(x2 + xy + y2) - 3xy = 1. (x2 + xy + y2) - 3xy = x2 + xy + y2 - 3xy = x2 - 2xy + y2 = (x - y)2 = 12 = 1
d) Ta có : D = x3 + y3 + 3xy(x2 + y2) + 6x2y2(x + y)
=> D = (x + y)(x2 - xy + y2) + 3xy(x2 + 2xy + y2) - 6x2y2 + 6x2y2
=> D = x2 - xy + y2 + 3xy(x + y)2
=> D = x2 - xy + y2 + 3xy.12
=> D = x2 + 2xy + y2
=> D = (x + y)2 = 12 = 1
a) \(A=x^3+y^3+3xy\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=x^2-xy+y^2+3xy=x^2+2xy+y^2\)
\(=\left(x+y\right)^2=1^2=1\)
b) \(B=x^3-y^3-3xy\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\)
\(=x^2+xy+y^2-3xy=x^2-2xy+y^2\)
\(=\left(x-y\right)^2=1^2=1\)
c) Ta có: \(x^2+y^2=10\)
\(\Leftrightarrow\left(x+y\right)^2-2xy=10\)
\(\Leftrightarrow4-2xy=10\Leftrightarrow2xy=-6\Leftrightarrow xy=-3\)
\(C=x^3+y^3\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=2\left(10+3\right)=26\)
a) cho x + y = 1. tính giá trị B = x3 + y3 + 3xy
b) cho x - y = 1 tính C = x3 - y3 - 3xy
c) x + y = 1 tính D = x3 + y3 +3xy (x2 + y3) + 6x2y2 (x + y)
Ai biết cho 3 like. Nhớ ghi cách giải
a)Cho x+y=2 và x.y=-3. Tính giá trị biểu thức x4+y4
b) Cho x+y=1.Tính x3+y3+3xy
c) Cho x-y=. Tính x3-y3-3xy
d) Cho x+y=3. Tính A=x2+2xy+y2-4x-4y+1
a. Có \(x+y=2\Rightarrow x^2+2xy+y^2=4\Rightarrow x^2+y^2=4-2.\left(-3\right)=10\)
\(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=10^2-2.\left(-3\right)^2=82\)
b. Ta có \(x+y=1\Rightarrow x^2+y^2=1-2xy\)
\(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=1.\left(1-2xy-xy\right)+3xy=1\)
Các câu còn lại tương tự
Tính A+B, A-B, B-A
a, A=x\(^2\)y+0,xy\(^3\)-7,5x\(^3\)y\(^2\)+x\(^3\)
B=3xy\(^3\)-x\(^2\)y+5,5x\(^3\)y\(^2\)
b, A=x\(^5\)+xy+0,3y\(^2\)-2
B=x\(^2\)y\(^3\)+5+1,3y\(^2\)
c, A=x\(^2\)y+xy\(^2\)-5x\(^2\)y\(^2\)+x\(^3\)
B=3xy\(^2\)-x\(^2\)y+x\(^2\)y\(^2\)