cho M=4/3+7/3^2+10/3^3+....+3n+1/3^n.Chung minh M<11/4
cho F =4/3+7/3^2+10/3^3+...+3n+1/3n với n thuộc N*.chứng minh F <11/4
Tìm n thuộc N, biết:
1) 2n+3 chia hết 3n+1
2)2n-2 chia hết cho n-1
3) 5n-1 chia hết cho n-2
4)3n+1 chia hết cho 2n+2
5)2n-1 chia hết cho 5n-3
6)n-3 chia hết cho n+4
7) 3n+3 chia hết cho n+2
8)4n chia hết cho n-3
9)5n+1 chia hết cho n+3
10)2n-2 chia hết cho n+3
Ta có n-3=n+4-7
6)=>n-4+7 chia hết cho n+4
=>7 chia hết cho n+4
=> n+4 thuộc Ư(7)
=> n+4 thuộc {1, -1,7,-7}
=> n thuộc {-3,-5,3,-11}
F= 4/3 + 7/(3^2) + 10/(3^3)+.....+ 3n+1/(3^n) với n thuộc số nguyên khác 0. Chứng minh F<11/4
F= 4/3 + 7/(3^2) + 10/(3^3)+.....+ 3n+1/(3^n) với n thuộc số nguyên khác 0. Chứng minh F<11/4
F= 4/3 + 7/(3^2) + 10/(3^3)+.....+ 3n+1/(3^n) với n thuộc số nguyên khác 0. Chứng minh F<11/4
F= 4/3 + 7/(3^2) + 10/(3^3)+.....+ 3n+1/(3^n) với n thuộc số nguyên khác 0. Chứng minh F<11/4
Cho \(D=\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+...+\frac{3n+1}{3^n}\)
C/m: \(D< \frac{11}{4}\)
hẹp mi :<
\(D=\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+...+\frac{3n+1}{3^n}\)
\(\Rightarrow3D=4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{3n+1}{3^{n-1}}\)
\(\Rightarrow3D-D=\left(4+\frac{7}{3}+\frac{10}{3^2}+...+\frac{3n+1}{3^{n-1}}\right)-\left(\frac{4}{3}+\frac{7}{3^2}+\frac{10}{3^3}+...+\frac{3n+1}{3^n}\right)\)
\(\Rightarrow2D=4+1+\frac{1}{3}+...+\frac{1}{3^{n-2}}-\frac{3n+1}{3^n}\)
Đặt \(M=4+1+\frac{1}{3}+...+\frac{1}{3^{n-2}}\)
\(\Rightarrow3M=12+3+1+...+\frac{1}{3^{n-3}}\)
\(\Rightarrow3M-M=\left(12+3+1+...+\frac{1}{3^{n-3}}\right)-\left(4+1+\frac{1}{3}+...+\frac{1}{3^{n-2}}\right)\)
\(\Rightarrow2M=11-\frac{1}{3^{n-2}}< 11\)
\(\Rightarrow2M< 11\)
\(\Rightarrow M< \frac{11}{2}\)
\(\Rightarrow2D< \frac{11}{2}\)
\(\Rightarrow D< \frac{11}{4}\left(đpcm\right)\)
35,Cho m<n ,chứng minh :
a, m+3<n+3
b, -3m>-3n
c, 4m-7<4n-7
d, 10-5m>10-5n
a, Ta có m<n
⇔m+3 < n+3 (t/c)
b, Ta có m<n
⇔-3m>-3n(t/c)
c, Ta có m<n
⇔4m < 4n (t/c)
⇔4m-7 <4n-7 (t/c)
d, Ta có m<n
⇔-5m > -5n (t/c)
⇔-5m+10> -5n+10(t/c)
Hay 10-5m > 10-5n
chúc bạn học tốt !
cho mọi số nguyên dương n>2 cmr \(\dfrac{1}{3}\)\(\dfrac{ }{ }\). \(\dfrac{4}{6}.\dfrac{7}{9}.\dfrac{10}{12}........\dfrac{3n-2}{3n}.\dfrac{3n+1}{3n+3}< \dfrac{1}{3\sqrt{n+1}}\)