Số số nguyên dương n thỏa mãn:9<3n<27
Bạn nào làm đúng mình tick lun
Bài 8. Cho số nguyên dương n. Tồn tại hay không số nguyên dương d thỏa mãn: d là ước của 3n^2 và n^2 +d là số chính phương. Bài 9. Chứng minh rằng không tồn tại hai số nguyên dương x, y thỏa mãn x^2 +y+1 và y^2 +4x+3 đều là số chính phương.
Ai đó giúp mình đi mòaa🤤🤤🤤
cho số nguyên dương N (10<=N<=10^6). hãy đếm số lượng các số nguyên dương a nhỏ hơn N (10<=a<=N) thỏa mãn điều kiện: a có ít nhất 2 chữ số, đồng thời a có tất cả các chữ số giống nhau và chia hết cho 9.
viết chương trình đếm các số a thỏa mãn
số nguyên dương n thỏa mãn : 9<3n<27
Theo bài ra ta có:
9<3n<27
=> 32<3n<33
=> 2<n<3
Vậy 2<n<3
Từ \(9< 3^n< 3^{27}\)
=> \(3^2< 3^n< 3^3\)
=> 2 < n < 3
nhưng vì n > 0 nên \(n\in\varnothing\) ( không có n thỏa mãn yêu cầu đề bài )
Phần trước là mình bị nhầm, bạn kia cũng nhầm, nếu n > 0 thì n cũng có thể là số thập phân nên trong trường hợp đó sai đề. ( hoặc bạn làm sai )
9 < 3n < 27
\(=>3^2< 3^n< 3^3\)
=> \(2< n< 3\)
Nhưng vì n là số nguyên dương
=> \(n\in\varnothing\) ( không tìm được n thỏa mãn yêu cầu đề bài )
là số nguyên tố
1.
\(5=3xy+x+y\ge3xy+2\sqrt{xy}\)
\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+5\right)\le0\Rightarrow xy\le1\)
\(P=\dfrac{\left(x+1\right)\left(x^2+1\right)+\left(y+1\right)\left(y^2+1\right)}{\left(x^2+1\right)\left(y^2+1\right)}-\sqrt{9-5xy}\)
\(P=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy+x+y+2}{x^2y^2+\left(x+y\right)^2-2xy+1}-\sqrt{9-5xy}\)
Đặt \(xy=a\Rightarrow0< a\le1\)
\(P=\dfrac{\left(5-3a\right)^3-3a\left(5-3a\right)+\left(5-3a\right)^2-2a+5-3a+2}{a^2+\left(5-3a\right)^2-2a+1}-\sqrt{9-5a}\)
\(P=\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{2}.2\sqrt{9-5a}\)
\(P\ge\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{4}\left(4+9-5a\right)\)
\(P\ge\dfrac{-29a^3+161a^2-277a+145}{4\left(5a^2-16a+13\right)}=\dfrac{\left(1-a\right)\left(29a^2-132a+145\right)}{4\left(5a^2-16a+13\right)}\)
\(P\ge\dfrac{\left(1-a\right)\left[29a^2+132\left(1-a\right)+13\right]}{4\left(5a^2-16a+13\right)}\ge0\)
\(P_{min}=0\) khi \(a=1\) hay \(x=y=1\)
Hai phân thức của P rất khó làm gọn bằng AM-GM hoặc Cauchy-Schwarz (nó hơi chặt)
2.
Đặt \(A=9^n+62\)
Do \(9^n⋮3\) với mọi \(n\in Z^+\) và 62 ko chia hết cho 3 nên \(A⋮̸3\)
Mặt khác tích của k số lẻ liên tiếp sẽ luôn chia hết cho 3 nếu \(k\ge3\)
\(\Rightarrow\) Bài toán thỏa mãn khi và chỉ khi \(k=2\)
Do tích của 2 số lẻ liên tiếp đều không chia hết cho 3, gọi 2 số đó lần lượt là \(6m-1\) và \(6m+1\)
\(\Leftrightarrow\left(6m-1\right)\left(6m+1\right)=9^n+62\)
\(\Leftrightarrow36m^2=9^n+63\)
\(\Leftrightarrow4m^2=9^{n-1}+7\)
\(\Leftrightarrow\left(2m\right)^2-\left(3^{n-1}\right)^2=7\)
\(\Leftrightarrow\left(2m-3^{n-1}\right)\left(2m+3^{n-1}\right)=7\)
Pt ước số cơ bản, bạn tự giải tiếp
Tập hợp các số nguyên dương n thỏa mãn 9<=3^n<82 là
9=32
81=34
=> Tập hợp các số đó là: 32;33;34 để bé hơn 82
=> n=2 hoặc n=3 hoặc n=4
9=32
81=34
=> Tập hợp các số đó là: 32;33;34 để bé hơn 82
=> n=2 hoặc n=3 hoặc n=4
tìm tất cả các số nguyên dương m,n thỏa mãn ; 9^m-3^m=n^4+2n^3+n^2+2n
Tập hợp các số nguyên dương n thỏa mãn
81< 1/ 9* 27^ n < hoac =3^10
tìm một số nguyên tố p và q sao cho tồn tại số nguyên dương n thỏa mãn điều kiện: 1/p-1/q=9/n
giúp mik với ạ , mik cần gấp
\(\dfrac{1}{p}-\dfrac{1}{q}=\dfrac{9}{n}\) =>\(\dfrac{q-p}{pq}=\dfrac{9}{n}\) =>\(n=\dfrac{9pq}{q-p}\).
- Đặt pq=n , p-q=9
- Vì n là số nguyên nên: 9pq ⋮ (q-p)
*Gỉa sử p,q lẻ thì 9pq ⋮ 2 =>p⋮2 hoặc q⋮2 (vô lý).
*Gỉa sử p chẵn, q lẻ thì p⋮2 mà p là số nguyên tố nên p=2.
- p-q=9 =>2-q=9 =>q=-7 (không thỏa mãn).
*Gỉa sử q chẵn, p lẻ thì q⋮2 mà q là số nguyên tố nên q=2.
- p-q=9 =>p=11 (thỏa mãn).
- Vậy p=11 ; q=2.
Cho số nguyên dương n thỏa mãn 6n2+5n+1 là số chính phương
a) Chứng minh n chia hết cho 40
b) Chứng minh 5n+3 là hợp số
c) Tìm n nguyên dương sao cho 2n+9 là số nguyên tố