Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khánh Sơn
Xem chi tiết
Dung Cr7
Xem chi tiết
Trần Cao Vỹ Lượng
Xem chi tiết
anhthu bui nguyen
9 tháng 5 2018 lúc 15:41

bạn ơi hình như đề bài là: 

\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+100}\)thì phải ha.

Trần Cao Vỹ Lượng
Xem chi tiết
Trần Cao Vỹ Lượng
Xem chi tiết
Ohh My God
8 tháng 5 2018 lúc 21:33

A=49/51

Ohh My God
8 tháng 5 2018 lúc 21:50

Mình nhầm 49/1234

nguyenthibichhang
12 tháng 7 2019 lúc 10:42

nếu muốn chứng minh A < 1 thì làm sao

zZz Hoàng Vân zZz
Xem chi tiết
Kiều Anh
Xem chi tiết
VICTORY_Trần Thạch Thảo
Xem chi tiết
Nguyễn Đăng Hải
21 tháng 6 2016 lúc 20:28

bạn làm theo công thức \(\frac{n}{n.\left(n+1\right)}=\frac{n}{n}-\frac{n}{n+1}\)

Trà My
21 tháng 6 2016 lúc 20:28

a)Đặt A= \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}\)

\(\Rightarrow2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n-1}-\frac{1}{2n+1}\)

\(\Rightarrow2A=1-\frac{1}{2n+1}< 1\)

\(\Rightarrow A< \frac{1}{2}\)(đpcm)

b)Ta có: \(1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...n}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

mà \(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=1+1-\frac{1}{n}\)

\(=2-\frac{1}{n}< 2\)

\(\Rightarrow1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...n}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}< 2\)

\(\Rightarrow1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...n}< 2\)(đpcm)

Nguyễn Đăng Hải
21 tháng 6 2016 lúc 20:43

\(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2n-1\right).\left(2n+1\right)}=2A\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n-1}-\frac{1}{2n+1}=2A\)

\(1-\frac{1}{2n+1}=2A\)

\(\frac{2n+1}{2n+1}-\frac{1}{2n+1}=2A\)

\(\frac{2n}{2n+1}=2A\)

\(\frac{1}{2}=\frac{1.n}{2.n}=\frac{n}{2n}\)

vì 2A  =\(\frac{2n}{2n+1}\)

suy ra A = \(\frac{1n}{2n+1}\)

vì mẫu của \(\frac{1}{2}\)bé hơn mẫu của A  

suy ra A < \(\frac{1}{2}\)

suy ra ĐPCM

Trần Nguyễn Tanh Ngọc
Xem chi tiết
Le Thi Khanh Huyen
19 tháng 7 2015 lúc 19:35

Ta có:

\(\frac{1}{1.2.3.4}