\(A=\frac{5}{15}+\frac{5}{35}+\frac{5}{63}+...+\frac{5}{399}\)
tính tổng
A= \(\frac{5}{15}+\frac{5}{35}+\frac{5}{63}+\frac{5}{99}+.......+\frac{5}{2915}\)
Ta có:
A=5/15+5/35+5/63+5/99+...+5/2915
=>A=5/3.5+5/5.7+5/7.9+5/9.11+...+5/53.55
=>A=5/2.(2/3.5+2/5.7+2/7.9+2/9.11+...+2/53.55)
=>A=5/2.(2/3-2/5+2/5-2/7+2/7-2/9+2/9-2/11+...+2/53-2/55)
=>A=5/2.(2/3-2/55)
=>A=5/2.104/165
=>A=52/33
Vậy A=52/33
OK!
A=\(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(A=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(=\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+...+\frac{2}{19\times21}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)
\(=\frac{1}{3}-\frac{1}{21}\)
\(=\frac{7}{21}-\frac{1}{21}\)
\(=\frac{6}{21}\)
Rút gọn kết quả là \(\frac{2}{7}\), k mk nha mk trả lời đầu tiên đó
\(A=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+....+\frac{2}{399}\)
\(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{19}-\frac{1}{21}\)
\(=\frac{1}{3}-\frac{1}{21}\)
\(=\frac{6}{21}=\frac{2}{7}\)
\(\frac{4^2}{15}.\frac{5^2}{24}.\frac{6^2}{35}.....\frac{20^2}{399}\) tính nhanh
\(=\frac{4.4}{3.5}.\frac{5.5}{4.6}......\frac{20.20}{19.21}\)
\(=\left(\frac{4.5...20}{3.4....19}\right).\left(\frac{4.5...20}{5.6....21}\right)\)
\(=\frac{20}{3}.\frac{4}{21}\)
\(=\frac{80}{63}\)
\(=\frac{4.4}{3.5}.\frac{5.5}{4.6}.....\frac{20.20}{19.21}\)
=\(\left(\frac{4.5...20}{3.4...19}\right).\left(\frac{4.5.....20}{5.6....21}\right)\)
=\(\frac{20}{3}.\frac{4}{21}\)=\(\frac{80}{63}\)
hok tốt
\(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\)+...+\(\frac{2}{399}\)
\(=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}\)
\(=\frac{1}{3}-\frac{1}{21}=\frac{2}{7}\)
tính tổng
a, A=\(\frac{5}{2}\)+\(\frac{5}{6}\)+\(\frac{5}{12}\)+.........+\(\frac{5}{6408}\)
b,B=7/15+7/35+7/63+......+7/483
\(A=5\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{6480}\right)\)
\(=5\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{80.81}\right)\)
\(=5\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{81-80}{80.81}\right)\)
\(=5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{80}-\frac{1}{81}\right)\)
\(=5\left(1-\frac{1}{81}\right)=\frac{5.80}{81}=\frac{400}{81}\)
b)
\(B=7\left(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{483}\right)\)
\(=7.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{21.23}\right)\)
=> \(2.B=7\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{21.23}\right)\)
\(=7\left(\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+...+\frac{23-21}{21.23}\right)\)
\(=7.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{21}-\frac{1}{23}\right)\)
\(=7\left(\frac{1}{3}-\frac{1}{23}\right)=\frac{7.20}{69}=\frac{140}{69}\)
=> \(B=\frac{140}{69}:2=\frac{70}{69}\)
a) SỬA LẠI ĐỀ : A = \(\frac{5}{2}+\frac{5}{6}+\frac{5}{12}+...+\frac{5}{6480}\)
= \(5.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{6480}\right)\)
=\(5.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{80.81}\right)\)
= \(5.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{80}-\frac{1}{81}\right)\)
= \(5.\left(1-\frac{1}{81}\right)\)
= \(5.\frac{80}{81}\)
= \(\frac{400}{81}\)
b) B = \(\frac{7}{15}+\frac{7}{35}+\frac{7}{63}+...+\frac{7}{483}\)
= \(\frac{7}{3.5}+\frac{7}{5.7}+\frac{7}{7.9}+...+\frac{7}{21.23}\)
= \(\frac{7}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{21.23}\right)\)
= \(\frac{7}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{21}-\frac{1}{23}\right)\)
= \(\frac{7}{2}.\left(\frac{1}{3}-\frac{1}{23}\right)\)
= \(\frac{7}{2}.\frac{20}{69}\)
= \(\frac{70}{69}\)
tính :
B = \(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...............+\frac{2}{399}\)
Ta có \(B=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)
\(=2.\left(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{19.21}\right)\)
\(=2.\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(=\frac{2}{2}.\left(\frac{1}{3}-\frac{1}{21}\right)\)
\(=\frac{2}{7}\)
Vậy \(B=\frac{2}{7}\)
Tính giá trị biểu thức:
\(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+....+\frac{2}{399}\)
ta có
A=\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}=\frac{1}{3}-\frac{1}{21}=\frac{2}{7}\)
\(=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+....+\frac{2}{19.21}\)
\(=2\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{21}\right)\)
=\(\frac{4}{7}\)
\(A=\)\(\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{19.21}\)\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{19}-\frac{1}{21}=\frac{1}{3}-\frac{1}{21}=\frac{2}{7}\)
Tính tổng: \(y=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(y=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)
\(=\frac{1}{3}-\frac{1}{21}=\frac{2}{7}\)
mình thắc mắc quy luật của phép tính trên là gì : 15 -> 35 -> 63 ... -> 399 ?
Quy luật la cac so o duoi mau cach nhau 2 don vi ( cach nhau mot so bang tu):
2/15=2/3.5 ( 3 va 5 cach nhau 2don vi)
2/35=2/5.7 ( 5 va 7 cach nhau 2 don vi)
.........
(Cai nay minh gui cho ban Duy Thanh nhe!!!!!!!!!!!!!!!!!!!)
C=\(\frac{2}{15}\)+\(\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
Ta có:
\(C=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)
\(=\frac{1}{3}-\frac{1}{21}=\frac{7}{21}-\frac{1}{21}=\frac{6}{21}=\frac{2}{7}\)
các bạn.