với giá trị nào của m thì biểu thức :
\(\frac{-m+1}{m+8}+\frac{m-1}{m+3}\) có giá trị dương
Với giá trị nào của m thì biểu thức:
\(\frac{_{-m+1}}{m+8}\)+ \(\frac{m-1}{m+3}\)có giá trị DƯƠNG
Hãy giúp tôi, đang gấp
Quy đồng nha :
\(A=\frac{-m+1}{m+8}+\frac{m-1}{m+3}\)
\(=\frac{\left(-m+1\right)\left(m+3\right)+\left(m-1\right)\left(m+8\right)}{\left(m+3\right)\left(m+8\right)}\)
\(=\frac{-\left(m-1\right)\left(m+3\right)+\left(m-1\right)\left(m+8\right)}{\left(m+3\right)\left(m+8\right)}\)
\(=\frac{\left(m-1\right)\left(m+8-m-3\right)}{\left(m+3\right)\left(m+8\right)}\)
\(=\frac{5\left(m-1\right)}{m^2+11m+24}\)
\(=\frac{5m-5}{m^2+2.m.\frac{11}{2}+\frac{121}{4}+\frac{25}{4}}=P\)
Để A dương thì P phải dương :
Ta thấy : \(m^2+2.m.\frac{11}{2}+\frac{121}{4}+\frac{25}{4}=\left(m+\frac{11}{2}\right)^2+\frac{25}{4}>0\forall m\)
\(\Rightarrow5m-5>0\Rightarrow m=1\)
Vậy với giá trị m thì A nhận giá trị dương
\(m^2+11m+24=m^2+2.\frac{11}{2}m+\left(\frac{11}{2}\right)^2-\left(\frac{11}{2}\right)^2+25\)
\(=\left(m+\frac{11}{2}\right)^2-\frac{21}{4}\)
với giá trị nào của m thì biểu thức
a)\(\frac{m-2}{4}+\frac{3m+1}{3}\)có giá trị âm
b) \(\:\frac{m-4}{6m+9}\)có giá trị dương
c) \(\frac{2m-3}{2m+3}+\frac{2m+3}{2m-3}\) có giá trị âm
d) \(\frac{-m+1}{m+8}+\frac{m-1}{m+3}\)có giá trị dương
e) \(\frac{\left(m+1\right)\left(m-5\right)}{2}\)có giá trị âm
\(a)\) Ta có :
\(\frac{m-2}{4}+\frac{3m+1}{3}< 0\)
\(\Leftrightarrow\)\(\frac{3m-6+12m+4}{12}< 0\) ( quy đồng )
\(\Leftrightarrow\)\(3m-6+12m+4< 0\)
\(\Leftrightarrow\)\(\left(12m+3m\right)+\left(4-6\right)< 0\)
\(\Leftrightarrow\)\(15m-2< 0\)
\(\Leftrightarrow\)\(15m< 2\)
\(\Leftrightarrow\)\(m< \frac{2}{15}\)
Vậy để \(\frac{m-2}{4}+\frac{3m+1}{3}\) có giá trị âm thì \(m< \frac{2}{15}\)
Chúc bạn học tốt ~
\(b)\) Ta có :
\(\frac{m-4}{6m+9}>0\)
\(\Leftrightarrow\)\(m-4>0\) ( nhân hai vế cho \(6m+9\) )
\(\Leftrightarrow\)\(m>4\)
Vậy để \(\frac{m-4}{6m+9}\) có giá trị dương thì \(m>4\)
Chúc bạn học tốt ~
Với giá trị nào của m thì biểu thức
a) -m+1/m+8 + m-1/m+3 có giá trị dương
b) (m+1)(m-5) / 2 có giá trị âm
\(\frac{-m+1}{m+8}+\frac{m-1}{m+3}\)( ĐKXĐ : \(x\ne-8;x\ne-3\))
\(=\frac{\left(-m+1\right)\left(m+3\right)}{\left(m+8\right)\left(m+3\right)}+\frac{\left(m-1\right)\left(m+8\right)}{\left(m+8\right)\left(m+3\right)}\)
\(=\frac{-m^2-2m+3}{\left(m+8\right)\left(m+3\right)}+\frac{m^2+7m-8}{\left(m+8\right)\left(m+3\right)}\)
\(=\frac{-m^2-2m+3+m^2+7m-8}{\left(m+8\right)\left(m+3\right)}\)
\(=\frac{5m-5}{\left(m+8\right)\left(m+3\right)}\)
Để biểu thức dương ( tức > 0 ) ta xét hai trường hợp sau :
I) \(\hept{\begin{cases}5m-5>0\\\left(m+8\right)\left(m+3\right)>0\end{cases}}\)
+) 5m - 5 > 0 => 5m > 5 => m > 1 (1)
+) ( m + 8 )( m + 3 ) > 0
1. \(\hept{\begin{cases}m+8>0\\m+3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-8\\m>-3\end{cases}}\Leftrightarrow m>-3\)(2)
2. \(\hept{\begin{cases}m+8< 0\\m+3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< -8\\m< -3\end{cases}}\Leftrightarrow m< -8\)(3)
Từ (1) , (2) và (3) => m > 1
II) \(\hept{\begin{cases}5m-5< 0\\\left(m+8\right)\left(m+3\right)< 0\end{cases}}\)
+) 5m - 5 < 0 => 5m < 5 => m < 1 (4)
+) ( m + 8 )( m + 3 ) < 0
1. \(\hept{\begin{cases}m+8< 0\\m+3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< -8\\m>-3\end{cases}}\)( loại )
2. \(\hept{\begin{cases}m+8>0\\m+3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-8\\m< -3\end{cases}}\Leftrightarrow-8< m< -3\)(5)
Từ (4) và (5) => -8 < m < -3
Từ I) và 2)
=> Với m > 1 hoặc -8 < m < -3 thì biểu thức có giá trị dương
\(\frac{\left(m+1\right)\left(m-5\right)}{2}\)có giá trị âm
=> ( m + 1 )( m - 5 ) < 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}m+1< 0\\m-5>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< -1\\m>5\end{cases}}\)( loại )
2. \(\hept{\begin{cases}m+1>0\\m-5< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>-1\\m< 5\end{cases}}\Leftrightarrow-1< m< 5\)
Vậy với -1 < m < 5 thì biểu thức có giá trị âm
Bài làm:
a) Ta có: \(\frac{-m+1}{m+8}+\frac{m-1}{m+3}\) \(\left(m\ne\left\{-8;-3\right\}\right)\)
\(=\frac{\left(1-m\right)\left(m+3\right)+\left(m-1\right)\left(m+8\right)}{\left(m+8\right)\left(m+3\right)}\)
\(=\frac{\left(m-1\right)\left(m+8-m-3\right)}{\left(m+8\right)\left(m+3\right)}\)
\(=\frac{5\left(m-1\right)}{\left(m+8\right)\left(m+3\right)}\)
Để BT có giá trị dương thì ta xét 2 TH sau:
+ Nếu: \(\hept{\begin{cases}5\left(m-1\right)>0\\\left(m+8\right)\left(m+3\right)>0\end{cases}}\Rightarrow m>1\)
+ Nếu: \(\hept{\begin{cases}5\left(m-1\right)< 0\\\left(m+8\right)\left(m+3\right)< 0\end{cases}}\Rightarrow-8< m< -3\)
b) Ta có: \(\frac{\left(m+1\right)\left(m-5\right)}{2}< 0\)
=> \(\left(m+1\right)\left(m-5\right)< 0\)
Ta xét 2 TH sau:
+ Nếu: \(\hept{\begin{cases}m+1>0\\m-5< 0\end{cases}}\Rightarrow-1< m< 5\)
+ Nếu: \(\hept{\begin{cases}m+1< 0\\m-5>0\end{cases}}\Rightarrow\hept{\begin{cases}m< -1\\m>5\end{cases}}\) (mâu thuẫn)
Vậy \(-1< m< 5\)
Với giá trị nào của m thì biểu thức:
a) \(\frac{m-2}{4}+\frac{3m+1}{3}\)có giá trị âm;
b) \(\frac{m-4}{6m+9}\)có giá trị dương;
c) \(\frac{\left(m+1\right)\left(m-5\right)}{2}\)có giá trị không âm.
M = \(\frac{2a-a^2}{a+3}\left(\frac{a-2}{a+2}-\frac{a+2}{a-2}+\frac{4a^2}{4-a^2}\right)\)
a) Với giá trị nào của a thì M có nghĩa
b) Rút gọn biểu thức M. Tình giá trị của M với a=3
c) Tìm giá trị nguyên dương của a để M nhận giá trị nguyên
d) Tìm giá trị nhỏ nhất của M khi a > -3
với giá trị nào của m thì biểu thức
a)m−2/4 +3m+1/3 có giá trị âm
b) m−4/6m+9 có giá trị dương
c) 2m−3/2m+3 +2m+3/2m−3 có giá trị âm
d) −m+1m+8 +m−1m+3 có giá trị dương
e) (m+1)(m−5)/2 có giá trị âm
a) Bpt <=> \(\frac{m-2}{4}+\frac{3m+1}{3}< 0\)
\(\Leftrightarrow3\left(m-2\right)+4\left(3m+1\right)< 0\)
\(\Leftrightarrow3m-6+12m+4< 0\)
\(\Leftrightarrow3m+12m-2< 0\)
\(\Leftrightarrow15m-2< 0\)
\(\Leftrightarrow15m< 2\)
\(\Leftrightarrow m< \frac{2}{15}\)
Vậy để bt đạt giá trị âm thì m < 2/15
Cho biểu thức
\(M=5ax^2y^2+\left(\frac{-1}{2}ax^2y^2\right)=7ax^2y^2+\left(-ax^2y^2\right)\)
a) Với giá trị nào của a thì M nhận giá trị âm với mọi x,y?
b) Với giá trị nào của a thì M nhận giá trị dương với mọi x,y?
c) Cho a=2. Tìm cặp số nguyên (x,y) để M=84
cho hai biểu thức : M=5x-3/8+6 ; N=x+5/6 với giá trị nào của x thì giá trị nào của biểu thức M lớn hơn giá trị của biểu thức N là 8 ?
Cho biểu thức M=\(\frac{4x+8}{x^2-1}:\frac{x+2}{x+1}-\frac{x-2}{1-x}\)
a) tìm điệu kiện của x để giá trị của biểu thúc M được xác định
b) rút gọn biểu thức M
c) tìm giá trị của x để giá trị của biểu thức M là một số nguyên
\(M=\frac{4x+8}{x^2-1}:\frac{x+2}{x+1}-\frac{x-2}{1-x}\) \(ĐKXĐ:x\ne\pm1\)
\(M=\frac{4\left(x+2\right)}{\left(x-1\right)\left(x+1\right)}.\frac{x+1}{x+2}+\frac{x-2}{x-1}\)
\(M=\frac{4}{x-1}+\frac{x-2}{x-1}\)
\(M=\frac{4+x-2}{x-1}\)
\(M=\frac{x+2}{x-1}\)
vậy \(M=\frac{x+2}{x-1}\)