Cho A = 1/11 + 1/12 + 1/13 +.....+ 1/70
Chứng minh rằng :
a) A > 4/3
b) A < 2,5
Cho A=1/11+1/12+1/13+...+1/70. Chứng minh rằng: 4/3 < A < 2,5.
Cho A=1/11+1/12+1/13+1/14+...+1/70. Chứng minh:
a)A>4/3
b)A<2,5
\(A=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{70}\)
\(A=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}\right)\)
\(+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(+\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}\right)\)
\(\Rightarrow A< \frac{1}{10}\cdot10+\frac{1}{20}\cdot10+\frac{1}{30}\cdot10+...+\frac{1}{60}\cdot10\)
\(A< 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{6}\)
\(A< 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{6}+\left(\frac{1}{4}+\frac{1}{5}\right)\)
\(A< 2+0,45< 2,5\)
\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\)
\(A>\left(\frac{1}{20}+\frac{1}{20}+..+\frac{1}{20}\right)+\left(\frac{1}{30}+...+\frac{1}{30}\right)+...+\left(\frac{1}{70}+\frac{1}{70}+...+\frac{1}{70}\right)\)
\(A>\frac{1}{2}+\frac{1}{3}+..+\frac{1}{7}\)
\(A>\frac{223}{140}>\frac{4}{3}\)
Cho A=1/11+1/12+1/13+...+1/70. Chứng minh rằng :
a, A>4/3 b,A<2,5
Cho A=1/11+1/12+1/13+...+1/70
Chứng minh rằng:
a)A>4/3
b)A<2,5
Chứng minh rằng:
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm
Cho A = 1/11 + 1/12 + 1/13 +...+ 1/70
CMR : a) A> 4/3 ; b) A< 2,5
cho A=1/11+1/12+1/13+...+1/70.CMR:
A>4/3
A<2,5
cho A=1/11+1/12+1/13+...+1/70.CMR:
A>4/3
A<2,5
cho A=1/11+1/12+1/13+...+1/70.CMR:
A>4/3
A<2,5
cho A=1/11+1/12+1/13+...+1/70.CMR:
A>4/3
A<2,5