(1+\(\frac{1}{100}\)) nhân (1+\(\frac{1}{99}\)) nhân......nhân (1+\(\frac{1}{3}\)) nhân (1+\(\frac{2}{2}\))
\(\left[\frac{1}{1}-\frac{1}{2}\right]nhân\left[\frac{1}{1}-\frac{1}{3}\right]nhân......................\left[\frac{1}{1}-\frac{1}{100}\right]\)
Tính nhanh:
\(\left(1+\frac{1}{100}\right)\cdot\left(1+\frac{1}{99}\right)\cdot\left(1+\frac{1}{98}\right)\cdot...\cdot\left(1+\frac{1}{2}\right)\)
. là nhân nhé còn ... là vâng vâng
\(\left(1+\frac{1}{100}\right).\left(1+\frac{1}{99}\right)............\left(1+\frac{1}{2}\right)\)
\(=\frac{101}{100}.\frac{100}{99}..............\frac{3}{2}\)
\(=\frac{101.100............3}{100.99...............2}\)
\(=\frac{101}{2}\)
\(=\frac{101}{100}.\frac{100}{989}.....\frac{3}{2}=\frac{101}{2}\)
\(\left(1+\frac{1}{100}\right).\left(1+\frac{1}{99}\right).\left(1+\frac{1}{98}\right)...\left(1+\frac{1}{2}\right)\)
\(=\frac{101}{100}.\frac{100}{99}.\frac{99}{98}...\frac{3}{2}\)
\(=\frac{101}{2}\)
Ủng hộ mk nha ^_^
cho \(M=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{99}{100};N=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}....\frac{100}{101}\)
a/ so sánh M và N
b/ tính M nhân N
c/ CMR : M < 1 / 10
Tính tích P=\(1-\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).......\left(1-\frac{1}{99}\right)\)
Lưu ý:dấu chấm là dấu nhân
Ta có: \(1-\frac{1}{2}.\frac{2}{3}....\frac{98}{99}\)
= \(1-\frac{1}{99}\)
= \(\frac{98}{99}\)
P=\(1-\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).........\left(1-\frac{1}{99}\right)\)
P=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.........\frac{98}{99}=\frac{1}{99}\)
\(P=1-\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{98}{99}=1-\frac{1}{99}=\frac{98}{99}\)
Nha ban Speed Ninja
Tìm x :
a) (131,4-80,8) nhân x :2,3+21,84 nhân 2= 65,68
b) ( \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2010}\) ) nhân x=2009
cho m=1/2 nhân 3/4 nhân 5/6 .... 99/100 và N= 2/3 nhân 4/5 nhân 6/7 .... 100/01
a )chứng minh rằng M < N b) tìm tích M nhân N c) chứng minh rằng m< \(\frac{1}{10}\)
Thu gọn các đa thức sau:
a) \(3xyz^2+\left(\frac{-4}{8}xyz^5\right)\text{ nhân}\frac{1}{3}xyz\)
b) \(3xyz^5\text{nhân}\left(\frac{-1}{7}xyz^2\right)\text{nhân}\frac{-1}{8}xyz^4\)
\(3xyz^2+\left(-\frac{4}{8}\right)xyz^5\cdot\frac{1}{3}xyz\)
\(=3xyz^2-\frac{1}{2}xyz\cdot\frac{1}{3}xyz\)
\(=3xyz-\frac{1}{6}x^2y^2z^2\)
\(xyz\left(3-\frac{1}{6}xyz\right)\)
b) \(3xyz^5\cdot\left(-\frac{1}{7}\right)xyz\cdot\frac{-1}{8}xyz^4\)
\(=\left[3\cdot\left(-\frac{1}{7}\right)\cdot\left(-\frac{1}{8}\right)\right]\left(x\cdot x\cdot x\right)\left(y\cdot y\cdot y\right)\left(z^5\cdot z\cdot z^4\right)\)
\(=\frac{3}{56}x^3y^3z^{10}\)
a, \(3xyz^2+\left(\frac{-4}{8}xyz^5\right)\cdot\frac{1}{3}xyz=3xyz^2+\left[\left(\frac{-4}{8}\right)\cdot\frac{1}{3}\right]xyz^5xyz\)\(=3xyz^2-\frac{1}{2}x^2y^2z^6\)
b, \(3xyz^5\cdot\left(\frac{-1}{7}xyz^2\right)\cdot\frac{-1}{8}xyz^4=\left[3\cdot\left(\frac{-1}{7}\right)\cdot\left(\frac{-1}{8}\right)\right]xyz^5xyz^2xyz^4=\frac{3}{56}x^3y^3z^{11}\)
Thu gọn các đa thức sau:
\(\frac{-3}{5}xyz^2\text{nhân}\frac{1}{3}xy\text{nhân}\frac{-1}{4}x^5yz\)
\(-\frac{3}{5}xyz^2\cdot\frac{1}{3}xy\cdot\left(-\frac{1}{4}\right)x^5yz\)
\(=\left(-\frac{3}{5}\cdot\frac{1}{3}\cdot\frac{-1}{4}\right)\left(x\cdot x\cdot x^5\right)\left(y\cdot y\cdot y\right)\left(z^2\cdot z\right)\)
\(=\frac{1}{20}x^7y^3z^3\)