Chung minh rang A=10n+18n-1 chia het cho 27 ( n la so tu nhien)
cho n la so tu nhien chung minh rang:
a)(n+10)(n+15) chia het cho 2
b)(10n+18n-1):27
a, ta có 2 trường hợp:
+) n chẵn =>n+10 = chẵn + chẵn = chẵn chia hết cho 2
+) n lẻ => n + 15 = lẻ + lẻ = chẵn chia hết cho 2
vậy (n+10)(n+15) chia hết cho 2(đpcm)
Chung to rang : A = 10^n +18n - 1 chia het cho 27 ( voi n thuoc so tu nhien)
chung minh rang so 11 ........... 1 - 10n chia het cho 9 voi moi so tu nhien n
n thua so 1
11.....1-10m=1111...11-n-9n =(111..1-n)-9n
111..1-n luôn luôn chia hết cho 9
=> 11...1-n-10n chia hết cho 9
cho n la so tu nhien. chung minh rang : n(n+1) (n+2 ) chia het cho 6
Giải :
Vì n thuộc N và n > 1
Ta có : n( n + 1 ) ( n + 2 ) = n ( n2- 1 ) = n2 . n - 1 . n = n3 - n
=) n3 - n = n( n + 1 ) ( n + 2 ) : hết cho 6 với mọi n thuộc N và n > 1 thì n( n + 1 ) ( n + 2 ) là tích của ba số tự nhiên liên tiếp
Do đó n( n + 1 ) ( n + 2 ) : hết cho 6 với mọi n thuộc N và n > 1
Vậy với n thuộc N , n > 1 thì n( n + 1 ) ( n + 2 ) : hết cho 6
cho n la so tu nhien chung minh rang n[n+1][n+2] chia het cho 6
Ta xét theo 2 trường hợp của n:
- Chia hết cho 2
+ Nếu n chẵn =>n sẽ chia hết cho 2
=>n.(n+1).(n+2) sẽ chia hết cho 2
+Nếu n lẻ =>n+1 sẽ chẵn và n+1 chia hết cho 2
=>n.(n+1).(n+2) sẽ chia hết cho 2
- Chia hết cho 3
+ Nếu n =3a=>n chia het cho 3=>n.(n+1).(n+2) chia hết cho 3
+Nếu n=3k+1 => n+2 sẽ chia hết cho 3 => n.(n+1).(n+2) chia hết cho 3
+Nếu n=3k+2=> n+1 chia hết cho 3=> n.(n+1).(n+2) chia hết cho 3
Từ đó suy ra, n.(n+1).(n+2) chia hết cho cả 2 và 3 , mà đã chia hết cho 2 và 3 sẽ chia hết cho 6.
Kết luận...
tick nha
cho n la so tu nhien , chung minh rang n . (n +1) . (n+2) chia het cho 6
Ta thấy n.(n+1) là 2 số tự nhiên liên tiếp => n.(n+1)\(⋮\)2
n.(n+1).(n+2) là 3 số tự nhiên liên tiếp=> n.(n+1).(n+2)\(⋮\)3
=> n.(n+1).(n+2) chia hết cho 6
Chung minh rang :
a, Tong 3 so tu nhien lien tiep la 1 so chia het cho 3
b, Tong 4 so tu nhien lien tiep khong chia het cho 4
a. Gọi 3 số đó là a , a+1, a+2
Ta có: a+ a+1 + a+2 = 3a +3
3 chia hết cho 3 => 3a chia hết cho 3
=> 3a+3 chia hết cho 3
=> Tổng của 3 số tự nhiên liên tiếp luôn chia hết cho 3
a. Gọi 4 số đó là a , a+1, a+2 ,a+4
Ta có: a+ a+1 + a+2 +a+4 = 4a +4
4 chia hết cho 4 => 4a chia hết cho 4
=> 4 a+4 chia hết cho 4
=> Tổng của 4 số tự nhiên liên tiếp luôn chia hết cho 4
ban tren lam sai roi kia vi ho noi khong chia het cho 4 ma
chung minh rang voi n la so tu nhien thi:(n2+n+1) ko chia het cho 2
n2 + n + 1
= n . n + n + 1
= n . ( n + 1 ) + 1
Do n . ( n + 1 ) là hai số liên tiếp => có tận cùng là : 0;2;6
=> n . ( n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7 không chia hết cho 2
Vậy n2.n+1 không chia hết cho 2
sogoku ng ta ko b thì ng ta hỏi ai lại chửi như z?
a) Chung to rang tong 3 so tu nhien lien tiep co 1 so chia het cho 3.
b) Chung to rang tong cua 3 so tu nhien lien tiep la 1 so chia het cho 3.
b)goi 3 số tự nhiên la a, a+1, a+2
tổng 3 số la 3a+3 chia hết cho 3
a)Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3