Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
RIBFUBUG
Xem chi tiết
Nguyễn Thành Trương
1 tháng 2 2019 lúc 19:11

Có nhiều cách để làm bài này nhé!

Áp dụng bất đẳng thức $x^2+y^2\geq 2xy$ nên ta có $x^2+y^2+xy \geq 3xy$
Mà $x^2+y^2+xy=x^2y^2 \geq 0$ nên suy ra $x^2y^2+3xy\leq 0 \iff -3\leq xy \leq 0$
Vì $x,y$ nguyên nên $xy$ nguyên, vậy nên $xy \in \left \{ -3,-2,-1,0\right \}$
Trường hợp $xy=-3 $ ta tìm được các nghiệm $(-1,3),(3,-1),(-3,1),(1,-3)$
Trường hợp $xy=-2$ ta tìm được các nghiệm $(-1,2),(2,-1),(1,-2),(-2,1)$
Trường hợp $xy=-1$ ta tìm được các nghiệm $(-1,1),(1,-1)$
Trường hợp $xy=0$ ta tìm được nghiệm $(0,0)$
Thử lại thì thấy chỉ có các nghiệm $(0,0),(1,-1),(-1,1)$ thỏa mãn và đó là các nghiệm nguyên cần tìm

Nguyễn Thành Trương
1 tháng 2 2019 lúc 19:12

PT ban đầu tương đương
$x^2(y^2-1)-yx-y^2=0$
Xét $\Delta = 4y^4-3y^2$
=> $\sqrt{\Delta} = y\sqrt{4y^2-3}$
Nếu y=0 thì x=0
Xét TH y khác 0
Pt nhận nghiệm nguyên nên $sqrt{\Delta}$ nguyên
mà y nguyên rồi nên $4y^2-3$ phải là số chính phương
Đặt $4y^2-3=k^2$
Tới đây suy ra được y=1 hoặc y=-1
Thay vào pt ban đầu tìm được x tương ứng.
Vậy pt có 3 nghiệm (x;y)=(0;0);(-1;1);(1;-1)

Nguyễn Thành Trương
1 tháng 2 2019 lúc 19:14

x^2+xy+y^2=x^2y^2
<> (1 - y^2).x^2 + xy + y^2 = 0
+ nếu 1 - y^2 = 0 <> y = +-1 thay vào => x => nghiệm (1,-1) và (-1,1)
+ nếu 1 - y^2 # 0 xem như pt bậc 2 ẩn x ta có
denta = y^2 - 4y^2.(1 - y^2) = y^2.(1 - 4 + 4y^2) = (4.y^2 - 3).y^2
- nếu y = 0 => x = 0
- nếu y # 0 ta có 4y^2 - 3 phải là số chính phương
<> 4y^2 - 3 = n^2
<> 4y^2 - n^2 = 3
<> (2y - n)(2y + n) =3
=> ta có các hệ sau
+ 2y - n = 3 và 2y + n =1
<> y = 1 và n =1 loại
+ 2y - n =1 và 2y + n = 3
<> y = n =1 loại
+ 2y - n = -3 và 2y + n = -1
<> y = -1 và n = 1 loại
+ 2y - n = -1 và 2y + n = -3
tương tự loại
Vậy có 3 nghiệm (0,0) (-1,1) và (1,-1)

nguyenanhduchi
Xem chi tiết
Nhật Minh Trần
16 tháng 11 2021 lúc 17:07

    \(x^3-y^3-2y^2-3y-1=0\)

\(<=>x^3=y^3+2y^2+3y+1\)\(y^3+3y^2+3y+1=(y+1)^3\)(vì \(y^2\)≥0) (1)

Ta có:\(x^3=y^3+2y^2+3y+1>y^3-3y^2+3y-1\)\(=(y-1)^3\) (2)

Từ (1) và (2) 

\(=>(y-1)^3< y^3+2y^2+3y+1=x^3 =<(y+1)^3\)

\(=>y^3+2y^2+3y+1=y^3,(y+1)^3\)

Xong giải ra thôi

Nhật Minh Trần
16 tháng 11 2021 lúc 17:07

Rất xin lỗi bạn vì đến năm 2021 bn ms nhận được câu trả lời

Nguyễn Hoài Phương
Xem chi tiết
hyun mau
Xem chi tiết
Nhật Minh Trần
16 tháng 11 2021 lúc 17:37

sao tôi toàn gặp 2015 thế nhỉ

Nhật Minh Trần
16 tháng 11 2021 lúc 17:38

Cái này bộ ba pytago nên bạn chỉ cần cm x=2 là đc

Vo Thi Minh Dao
Xem chi tiết
Ma Sói
25 tháng 11 2018 lúc 15:10

Ta có:

\(x^2y^2-2x\left(y+2\right)+4=0\)

\(\Leftrightarrow x^2y^2-2xy+4=4x\)

\(\Leftrightarrow\left(xy-1\right)^2+3=4x\)

\(\left(xy-1\right)^2+3>0\)

Nên 4x>0

x>0

Ta có:

\(x^2y^2-2x\left(y+2\right)+4=0\)

\(\Leftrightarrow x^2y^2+4=2x\left(y+2\right)\)

\(x^2y^2+4>0\forall x,y\)

Nên \(2x\left(y+2\right)>0\)

Mặt khác x>0

nên y+2>0

=> y>-2 (1)

Áp dụng bđt Cosi ta có:

\(x^2y^2+4\ge4xy\)

\(\Leftrightarrow x^2y^2+4=2x\left(y+2\right)\)

Nên \(2x\left(y+2\right)\ge4xy\)

\(\Rightarrow y+2\ge2y\)

\(\Leftrightarrow y\le2\) (2)

Do y \(\in Z\) và ta đã có (1), (2)

Nên \(y\in\left\{-1;0;1;2\right\}\)

Th1: y = -1

\(\Rightarrow x^2-2x\left(-1+2\right)+4=0\)

\(\Leftrightarrow x^2-2x+4=0\)

\(\Leftrightarrow\left(x-1\right)^2+3=0\left(vl\right)\)

Th2: y = 0

\(\Rightarrow x^2-2x\left(0+2\right)+4=0\)

\(\Leftrightarrow x^2-4x+4=0\)

\(\Rightarrow x=2\) (nhận)

Th3: y = 1

\(\Rightarrow x^2-2x\left(1+2\right)+4=0\)

\(\Leftrightarrow x^2-6x+4=0\)

\(\Leftrightarrow\left(x-3\right)^2=5\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=-\sqrt{5}+3\end{matrix}\right.\)

Loại do x \(\in Z\)

Th4: y = 2

\(\Rightarrow x^2-2x\left(2+2\right)+4=0\)

\(\Leftrightarrow x^2-8x+4=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{12}+3\\x=-\sqrt{12}+3\end{matrix}\right.\)

Loại do x \(\in Z\)

Vậy \(\left(x;y\right)\in\left\{2;0\right\}\)

Ma Sói
25 tháng 11 2018 lúc 15:22

4 Th sai cả rồi

do mình thế ngu

ra y \(\in\left\{-1;0;1;2\right\}\) thì bạn thế vô tính x nhé

Ma Sói
25 tháng 11 2018 lúc 15:27

Th1 và Th3 thì mình làm đúng rồi

Th2 : y=0

\(\Rightarrow-2x\left(0+2\right)+4=0\)

\(\Leftrightarrow4x=4\Leftrightarrow x=1\) (nhận)

Th4: y=2

\(\Rightarrow4x^2-2x\left(2+2\right)+4=0\)

\(\Leftrightarrow4x^2-8x+4=0\)

\(\Rightarrow x=1\) (nhận)

Vậy \(\left(x;y\right)\in\left\{\left(1;0\right),\left(1;2\right)\right\}\)

ngo thi diem
Xem chi tiết
Nguyen Anh Duc
Xem chi tiết
Chuyengia247
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 1 2022 lúc 8:15

\(\Leftrightarrow3^x=y\left(y+2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}y=3^a\\y+2=3^b\end{matrix}\right.\) với \(b>a\) và \(a+b=x\)

\(\Rightarrow3^b-3^a=2\Rightarrow3^a\left(3^{b-a}-1\right)=2\)

Nếu \(a>0\Rightarrow3^a\left(3^{b-a}-1\right)>3>2\) (ktm)

\(\Rightarrow a=0\Rightarrow b=1\)

\(\Rightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)

nguyen hai yen
Xem chi tiết
Thắng Nguyễn
17 tháng 4 2016 lúc 20:27

2*(2xy + x + y) = 2*83
=> 4xy + 2x + 2y = 166
=> 2x(2y + 1) + 2y +1 = 167 (cộng 2 vế với 1)
=> (2x + 1)(2y + 1) = 167
=> (2x + 1), (2y + 1) thuộc Ư(167) (vì x, y thuộc Z)
=> (2x + 1), (2y + 1) thuộc (1, -1, 167, -167)

kẻ bảng ra