tim nghiem nguyen cua pt
xy + x - 2y = 5
Tim nghiem nguyen cua pt \(x^2+y^2+xy=x^2y^2\)
Có nhiều cách để làm bài này nhé!
Áp dụng bất đẳng thức $x^2+y^2\geq 2xy$ nên ta có $x^2+y^2+xy \geq 3xy$
Mà $x^2+y^2+xy=x^2y^2 \geq 0$ nên suy ra $x^2y^2+3xy\leq 0 \iff -3\leq xy \leq 0$
Vì $x,y$ nguyên nên $xy$ nguyên, vậy nên $xy \in \left \{ -3,-2,-1,0\right \}$
Trường hợp $xy=-3 $ ta tìm được các nghiệm $(-1,3),(3,-1),(-3,1),(1,-3)$
Trường hợp $xy=-2$ ta tìm được các nghiệm $(-1,2),(2,-1),(1,-2),(-2,1)$
Trường hợp $xy=-1$ ta tìm được các nghiệm $(-1,1),(1,-1)$
Trường hợp $xy=0$ ta tìm được nghiệm $(0,0)$
Thử lại thì thấy chỉ có các nghiệm $(0,0),(1,-1),(-1,1)$ thỏa mãn và đó là các nghiệm nguyên cần tìm
PT ban đầu tương đương
$x^2(y^2-1)-yx-y^2=0$
Xét $\Delta = 4y^4-3y^2$
=> $\sqrt{\Delta} = y\sqrt{4y^2-3}$
Nếu y=0 thì x=0
Xét TH y khác 0
Pt nhận nghiệm nguyên nên $sqrt{\Delta}$ nguyên
mà y nguyên rồi nên $4y^2-3$ phải là số chính phương
Đặt $4y^2-3=k^2$
Tới đây suy ra được y=1 hoặc y=-1
Thay vào pt ban đầu tìm được x tương ứng.
Vậy pt có 3 nghiệm (x;y)=(0;0);(-1;1);(1;-1)
x^2+xy+y^2=x^2y^2
<> (1 - y^2).x^2 + xy + y^2 = 0
+ nếu 1 - y^2 = 0 <> y = +-1 thay vào => x => nghiệm (1,-1) và (-1,1)
+ nếu 1 - y^2 # 0 xem như pt bậc 2 ẩn x ta có
denta = y^2 - 4y^2.(1 - y^2) = y^2.(1 - 4 + 4y^2) = (4.y^2 - 3).y^2
- nếu y = 0 => x = 0
- nếu y # 0 ta có 4y^2 - 3 phải là số chính phương
<> 4y^2 - 3 = n^2
<> 4y^2 - n^2 = 3
<> (2y - n)(2y + n) =3
=> ta có các hệ sau
+ 2y - n = 3 và 2y + n =1
<> y = 1 và n =1 loại
+ 2y - n =1 và 2y + n = 3
<> y = n =1 loại
+ 2y - n = -3 và 2y + n = -1
<> y = -1 và n = 1 loại
+ 2y - n = -1 và 2y + n = -3
tương tự loại
Vậy có 3 nghiệm (0,0) (-1,1) và (1,-1)
tim nghiem nguyen cua phuong trinh
x^3-y^3-2y^2-3y-1=0
\(x^3-y^3-2y^2-3y-1=0\)
\(<=>x^3=y^3+2y^2+3y+1\)≤\(y^3+3y^2+3y+1=(y+1)^3\)(vì \(y^2\)≥0) (1)
Ta có:\(x^3=y^3+2y^2+3y+1>y^3-3y^2+3y-1\)\(=(y-1)^3\) (2)
Từ (1) và (2)
\(=>(y-1)^3< y^3+2y^2+3y+1=x^3 =<(y+1)^3\)
\(=>y^3+2y^2+3y+1=y^3,(y+1)^3\)
Xong giải ra thôi
Rất xin lỗi bạn vì đến năm 2021 bn ms nhận được câu trả lời
tim nghiem nguyen cua pt
\(x^2+xy+y^2=x^2y^2\)
tim nghiem nguyen cua phuong trinh : 3^x + 4^x = 5^x
Cái này bộ ba pytago nên bạn chỉ cần cm x=2 là đc
tim tat ca cac nghiem nguyen cua phuong trinh :
\(x^2y^2-2x\left(y+2\right)+4=0\)
Ta có:
\(x^2y^2-2x\left(y+2\right)+4=0\)
\(\Leftrightarrow x^2y^2-2xy+4=4x\)
\(\Leftrightarrow\left(xy-1\right)^2+3=4x\)
Mà \(\left(xy-1\right)^2+3>0\)
Nên 4x>0
x>0
Ta có:
\(x^2y^2-2x\left(y+2\right)+4=0\)
\(\Leftrightarrow x^2y^2+4=2x\left(y+2\right)\)
Mà \(x^2y^2+4>0\forall x,y\)
Nên \(2x\left(y+2\right)>0\)
Mặt khác x>0
nên y+2>0
=> y>-2 (1)
Áp dụng bđt Cosi ta có:
\(x^2y^2+4\ge4xy\)
Mà \(\Leftrightarrow x^2y^2+4=2x\left(y+2\right)\)
Nên \(2x\left(y+2\right)\ge4xy\)
\(\Rightarrow y+2\ge2y\)
\(\Leftrightarrow y\le2\) (2)
Do y \(\in Z\) và ta đã có (1), (2)
Nên \(y\in\left\{-1;0;1;2\right\}\)
Th1: y = -1
\(\Rightarrow x^2-2x\left(-1+2\right)+4=0\)
\(\Leftrightarrow x^2-2x+4=0\)
\(\Leftrightarrow\left(x-1\right)^2+3=0\left(vl\right)\)
Th2: y = 0
\(\Rightarrow x^2-2x\left(0+2\right)+4=0\)
\(\Leftrightarrow x^2-4x+4=0\)
\(\Rightarrow x=2\) (nhận)
Th3: y = 1
\(\Rightarrow x^2-2x\left(1+2\right)+4=0\)
\(\Leftrightarrow x^2-6x+4=0\)
\(\Leftrightarrow\left(x-3\right)^2=5\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=-\sqrt{5}+3\end{matrix}\right.\)
Loại do x \(\in Z\)
Th4: y = 2
\(\Rightarrow x^2-2x\left(2+2\right)+4=0\)
\(\Leftrightarrow x^2-8x+4=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{12}+3\\x=-\sqrt{12}+3\end{matrix}\right.\)
Loại do x \(\in Z\)
Vậy \(\left(x;y\right)\in\left\{2;0\right\}\)
4 Th sai cả rồi
do mình thế ngu
ra y \(\in\left\{-1;0;1;2\right\}\) thì bạn thế vô tính x nhé
Th1 và Th3 thì mình làm đúng rồi
Th2 : y=0
\(\Rightarrow-2x\left(0+2\right)+4=0\)
\(\Leftrightarrow4x=4\Leftrightarrow x=1\) (nhận)
Th4: y=2
\(\Rightarrow4x^2-2x\left(2+2\right)+4=0\)
\(\Leftrightarrow4x^2-8x+4=0\)
\(\Rightarrow x=1\) (nhận)
Vậy \(\left(x;y\right)\in\left\{\left(1;0\right),\left(1;2\right)\right\}\)
tim gia tri nguyen cua m de hpt
\(3x-y=2m-1 va x+2y=3m-2\)
co nghiem (x;y) tm x^2 + 2y^2 = 9
tim nghiem nguyen cua pt
a)x^2+x+6=y^2
b)x^2+x+1991=y^2
c)x^2=y^2+2y+13
tim nghiem nguyen duong: \(3^x=y^2+2y\)
\(\Leftrightarrow3^x=y\left(y+2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}y=3^a\\y+2=3^b\end{matrix}\right.\) với \(b>a\) và \(a+b=x\)
\(\Rightarrow3^b-3^a=2\Rightarrow3^a\left(3^{b-a}-1\right)=2\)
Nếu \(a>0\Rightarrow3^a\left(3^{b-a}-1\right)>3>2\) (ktm)
\(\Rightarrow a=0\Rightarrow b=1\)
\(\Rightarrow\left\{{}\begin{matrix}y=1\\x=1\end{matrix}\right.\)
Tim nghiem nguyen cua phuong trinh: 2xy + x + y=83
2*(2xy + x + y) = 2*83
=> 4xy + 2x + 2y = 166
=> 2x(2y + 1) + 2y +1 = 167 (cộng 2 vế với 1)
=> (2x + 1)(2y + 1) = 167
=> (2x + 1), (2y + 1) thuộc Ư(167) (vì x, y thuộc Z)
=> (2x + 1), (2y + 1) thuộc (1, -1, 167, -167)
kẻ bảng ra