cho a b c là ba số dương thỏa mãn
\(\hept{\begin{cases}a< b< c\\a+b+c=6\\ab+bc+ac=9\end{cases}}\)
cm \(a< 1< b< 3< c< 4\)
Cho 3 số a;b;c thỏa mãn :
\(\hept{\begin{cases}a< b< c\\\text{a+b+c=6}\\\text{ab+bc+ac=}9\end{cases}}\)
CMR : a<1<b<3<c<4
Bổ xung đề a,b,c dương
1/ Chứng minh a < 1
Ta có: \(\left(a-1\right)\left(b-1\right)+\left(b-1\right)\left(c-1\right)+\left(c-1\right)\left(a-1\right)\)
\(=ab+bc+ca-2\left(a+b+c\right)+3=9-2.6+3=0\)
Nếu \(1\le a< b< c\) thì \(\left(a-1\right)\left(b-1\right)+\left(b-1\right)\left(c-1\right)+\left(c-1\right)\left(a-1\right)>0\)(mâu thuẫn)
\(\Rightarrow a< 1\)
Chứng minh b > 1
Giả sử \(a< b\le1\Rightarrow ab< 1\)
Ta có: \(9=ab+c\left(a+b\right)< 1+c\left(a+b\right)\)
\(\Rightarrow c\left(a+b\right)>8\)
Ta có: \(\frac{c}{2}+\left(a+b\right)\ge2\sqrt{\frac{c}{2}.\left(a+b\right)}>2\sqrt{\frac{8}{2}}=4\)
Ta có: \(\hept{\begin{cases}a+b+c=6\\a+b+\frac{c}{2}>4\end{cases}}\)
\(\Rightarrow6-c+\frac{c}{2}>4\)
\(\Rightarrow c< 4\)
\(\Rightarrow a+b>2\)(trái giải thuyết)
\(\Rightarrow b>1\)
Tương tự làm phần còn lại nhé.
tui thấy cách cho THCS r` cho a,b,c la so thuc thoa man : a<b<c ; a+b+c=6 ; ab+bc+ac=9 . chung minh rang : 0<a<1<b<3<c<4? | Yahoo Hỏi & Đáp
Áp dụng hệ thức Vi-et dễ thấy \(a,b,c\) là nghiệm của \(f\left(x\right)=\left(x-a\right)\left(x-b\right)\left(x-c\right)=x^3-6x^2+9x-abc\)
Mà định lí Rolle có truyền tụng rằng \(f'\) có nghiệm trên mỗi khoảng \(\left(a,b\right)\) và \(\left(b,c\right)\)
Nhưng \(f'\left(x\right)=3x^2-12x+9=3\left(x-1\right)\left(x-3\right)\)
Có 2 nghiệm là \(x_1=1;x_2=3\). Do đó
\(a< x_1=1< b< x_2=3< c\)
Rõ ràng rằng \(f\left(x\right)< 0\) trên \(\left(-\infty,a\right)\) và \(\left(b,c\right)\)
\(f\left(x\right)>0\) trên \(\left(a,b\right)\) và \(\left(c,\infty\right)\)
Khi \(f\left(4\right)=4-abc=f\left(1\right)>0\), do đó nghiệm lớn nhất thỏa mãn \(c< 4\)
Ta có ĐPCM
Chứng minh rằng nếu a, b, c là ba số thỏa mãn điều kiện:
\(\hept{\begin{cases}abc>0\\a+b+c>0\\ab+bc+ca>0\end{cases}}\)
thì a, b, c là các số dương.
có bao nhiêu bộ ba số nguyên a,b,c thỏa mãn hệ
\(\hept{\begin{cases}ab+bc+ca=0\\\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{3}{4}=0\end{cases}}\)
khó quá nha bn
mk mới chỉ hok lớp 7 thôi
xin lỡi nha
mk tin sẽ có nguoi tra lới cau hoi của bn
hok tot >_<
tìm số nguyên dương a,b,c( b>c)thỏa mãn\(\hept{\begin{cases}b^2+c^2=a^2\\2\left(a+b+c\right)=bc\end{cases}}\)
Cho ba số thực a,b,c sao cho: \(\hept{\begin{cases}a+b+c>0\\ab+ac+bc>0\\abc>0\end{cases}}\)
cmr a,b,c dương
Bài 1: Tìm các số a,b,c biết:
a)\(\hept{\begin{cases}a\left(a+b+c\right)=12\\b\left(a+b+c\right)=18\\c\left(a+b+c\right)=30\end{cases}}\)
b) \(ab=\dfrac{3}{5};bc=\dfrac{4}{5};ac=\dfrac{3}{4}\)
c) \(\hept{\begin{cases}ab=c\\bc=4a\\ac=9b\end{cases}}\)
Cho a,b,b thỏa mãn \(\hept{\begin{cases}a^2+b^2+c^2=2\\ab+bc+ca=1\end{cases}}\)CMR \(\frac{-4}{3}< a,b,c< \frac{4}{3}\)
Cho các số thực a,b,c thỏa mãn điều kiện \(\hept{\begin{cases}a+b+c=4\\ab+bc+ca=4\end{cases}}\).Chứng minh rằng \(0\le a,b,c\le\frac{8}{3}\)
Cho ba số a, b, c thỏa mãn \(\hept{\begin{cases}a+b+c=0\\\\a^2+b^2+c^2=2009\end{cases}}\) tính \(A=a^4+b^4+c^4\)
\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Rightarrow ab+bc+ac=-\frac{2009}{2}\)
\(\left(ab+bc+ac\right)^2=a^2b^2+a^2c^2+b^2c^2+2abc\left(a+c+b\right)=a^2b^2+a^2c^2+b^2c^2\)\(\Rightarrow a^2b^2+a^2c^2+b^2c^2=\frac{2009^2}{4}\)
\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)\)
\(\Rightarrow2009^2=a^4+b^4+c^4+\frac{2009^2}{4}\cdot2\)
\(\Rightarrow a^4+b^4+c^4=\frac{2009^2}{2}\)
Ta có \(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=-2\left(ab+bc+ca\right)\)
\(a^2b^2+b^2c^2+c^2a^2=\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)=\left(\frac{a^2+b^2+c^2}{2}\right)^2=\frac{2009^2}{4}\)
\(A=a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)=\frac{2009^2}{2}\)