Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Trình Hai Ẩn
Xem chi tiết
alibaba nguyễn
1 tháng 6 2017 lúc 15:34

Bổ xung đề a,b,c dương 

1/ Chứng minh a < 1 

Ta có: \(\left(a-1\right)\left(b-1\right)+\left(b-1\right)\left(c-1\right)+\left(c-1\right)\left(a-1\right)\)

\(=ab+bc+ca-2\left(a+b+c\right)+3=9-2.6+3=0\)

Nếu \(1\le a< b< c\) thì \(\left(a-1\right)\left(b-1\right)+\left(b-1\right)\left(c-1\right)+\left(c-1\right)\left(a-1\right)>0\)(mâu thuẫn)

\(\Rightarrow a< 1\)

Chứng minh b > 1 

Giả sử \(a< b\le1\Rightarrow ab< 1\)

Ta có: \(9=ab+c\left(a+b\right)< 1+c\left(a+b\right)\)

\(\Rightarrow c\left(a+b\right)>8\)

Ta có: \(\frac{c}{2}+\left(a+b\right)\ge2\sqrt{\frac{c}{2}.\left(a+b\right)}>2\sqrt{\frac{8}{2}}=4\)

Ta có: \(\hept{\begin{cases}a+b+c=6\\a+b+\frac{c}{2}>4\end{cases}}\)

\(\Rightarrow6-c+\frac{c}{2}>4\)

\(\Rightarrow c< 4\)

\(\Rightarrow a+b>2\)(trái giải thuyết)

\(\Rightarrow b>1\)

Tương tự làm phần còn lại nhé.

Thắng Nguyễn
1 tháng 6 2017 lúc 16:52

tui thấy cách cho THCS r` cho a,b,c la so thuc thoa man : a<b<c ; a+b+c=6 ; ab+bc+ac=9 . chung minh rang : 0<a<1<b<3<c<4? | Yahoo Hỏi & Đáp

Thắng Nguyễn
1 tháng 6 2017 lúc 17:42

Áp dụng hệ thức Vi-et dễ thấy \(a,b,c\) là nghiệm của \(f\left(x\right)=\left(x-a\right)\left(x-b\right)\left(x-c\right)=x^3-6x^2+9x-abc\)

Mà định lí Rolle có truyền tụng rằng \(f'\) có nghiệm trên mỗi khoảng \(\left(a,b\right)\) và \(\left(b,c\right)\)

Nhưng \(f'\left(x\right)=3x^2-12x+9=3\left(x-1\right)\left(x-3\right)\)

Có 2 nghiệm là \(x_1=1;x_2=3\). Do đó

\(a< x_1=1< b< x_2=3< c\)

Rõ ràng rằng \(f\left(x\right)< 0\) trên \(\left(-\infty,a\right)\) và \(\left(b,c\right)\)

\(f\left(x\right)>0\) trên \(\left(a,b\right)\) và \(\left(c,\infty\right)\)

Khi \(f\left(4\right)=4-abc=f\left(1\right)>0\), do đó nghiệm lớn nhất thỏa mãn \(c< 4\)

Ta có ĐPCM

le ngoc anh vu
Xem chi tiết
Cold Blood
28 tháng 10 2018 lúc 15:11

đề sai rồi.vd:5,-1,-2

Nga Nguyễn
Xem chi tiết
Chu Tien Thien
13 tháng 11 2018 lúc 18:11

khó quá nha bn

mk mới chỉ hok lớp 7 thôi

xin lỡi nha

mk tin sẽ có nguoi tra lới cau hoi của bn

hok tot >_<

cc cc
Xem chi tiết
Linh_Chi_chimte
Xem chi tiết
Trần Thị Hảo
Xem chi tiết
Hanazono Hikari
2 tháng 8 2017 lúc 22:24

bn có thể kb với mk đc ko

Trần Thị Hảo

Hoàng Trung Đức
Xem chi tiết
phượng hoàng tài năng
Xem chi tiết
Aeris
Xem chi tiết
Bui Huyen
26 tháng 3 2019 lúc 23:29

\(a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\Rightarrow ab+bc+ac=-\frac{2009}{2}\)

\(\left(ab+bc+ac\right)^2=a^2b^2+a^2c^2+b^2c^2+2abc\left(a+c+b\right)=a^2b^2+a^2c^2+b^2c^2\)\(\Rightarrow a^2b^2+a^2c^2+b^2c^2=\frac{2009^2}{4}\)

\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)\)

\(\Rightarrow2009^2=a^4+b^4+c^4+\frac{2009^2}{4}\cdot2\)

\(\Rightarrow a^4+b^4+c^4=\frac{2009^2}{2}\)

Tran Le Khanh Linh
24 tháng 5 2020 lúc 20:46

Ta có \(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)=-2\left(ab+bc+ca\right)\)

\(a^2b^2+b^2c^2+c^2a^2=\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)=\left(\frac{a^2+b^2+c^2}{2}\right)^2=\frac{2009^2}{4}\)

\(A=a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)=\frac{2009^2}{2}\)

Khách vãng lai đã xóa