Giai PT 2x+1 +x\(\sqrt{x^2+2}\)+(x+1)\(\sqrt{x^2+2x+3}\)= 0
Giai PT
\(2x^2+\sqrt{1-x}+2x\sqrt{1-x^2}-1=0\)
giai pt
a) \(\sqrt{1+\sqrt{1-x^2}.}[\sqrt{\left(1-x\right)^3}-\sqrt{\left(1+x\right)^3}]=2+\sqrt{1-x^2}\)
b) \(\sqrt{1-x}-2x\sqrt{1-x^2}-2x^2+1=0\)
c) \(64x^6-112x^4+56x^2-7=2\sqrt{1-x^2}\)
a/ ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{1-x}=a\ge0\\\sqrt{1+x}=b\ge0\end{matrix}\right.\) được hệ:
\(\left\{{}\begin{matrix}\sqrt{1+ab}\left(a^3-b^3\right)=2+ab\\a^2+b^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{1+ab}\left(a-b\right)\left(a^2+ab+b^2\right)=a^2+b^2+ab\\a^2+b^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{1+ab}\left(a-b\right)=1\\a^2+b^2=2\end{matrix}\right.\) \(\left(a\ge b\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(1+ab\right)\left(a-b\right)^2=1\\a^2+b^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(1+ab\right)\left(2-2ab\right)=1\\a^2+b^2=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}1-a^2b^2=\frac{1}{2}\\a^2+b^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a^2b^2=\frac{1}{2}\\a^2+b^2=2\end{matrix}\right.\)
Theo Viet đảo, \(a^2;b^2\) là nghiệm của:
\(t^2-2t+\frac{1}{2}=0\Rightarrow\left[{}\begin{matrix}t=\frac{2+\sqrt{2}}{2}\\t=\frac{2-\sqrt{2}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}1-x=\frac{2+\sqrt{2}}{2}\\1-x=\frac{2-\sqrt{2}}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\frac{\sqrt{2}}{2}\\x=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
2 phần còn lại ko biết giải theo kiểu lớp 10, chỉ biết lượng giác hóa, bạn tham khảo thôi :(
b/ Đặt \(x=cos2t\) pt trở thành:
\(\sqrt{1-cos2t}-2cos2t.\sqrt{1-cos^22t}-\left(2cos^22t-1\right)=0\)
\(\Leftrightarrow\sqrt{2}sint-2sin2t.cos2t-cos4t=0\)
\(\Leftrightarrow\sqrt{2}sint-sin4t-cos4t=0\)
\(\Leftrightarrow\sqrt{2}sint=sin4t+cos4t=\sqrt{2}sin\left(4t+\frac{\pi}{4}\right)\)
\(\Leftrightarrow sin\left(4t+\frac{\pi}{4}\right)=sint\)
\(\Leftrightarrow\left[{}\begin{matrix}4t+\frac{\pi}{4}=t+k2\pi\\4t+\frac{\pi}{4}=\pi-t+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}t=-\frac{\pi}{12}+\frac{k2\pi}{3}\\t=-\frac{\pi}{20}+\frac{k2\pi}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=cos\left(-\frac{\pi}{6}+\frac{k4\pi}{3}\right)\\x=cos\left(-\frac{\pi}{10}+\frac{k4\pi}{5}\right)\end{matrix}\right.\) với \(k\in Z\)
c/ Đặt \(x=cost\)
\(64cos^6t-112cos^4t+56cos^2t-7=2\sqrt{1-cos^2t}\)
\(\Leftrightarrow64cos^6t-112cos^4t+56cos^2t-7=2sint\)
Nhận thấy \(cost=0\) không phải nghiệm, pt tương đương:
\(64cos^7t-112cos^5t+56cos^3t-7cost=2sint.cost\)
\(\Leftrightarrow cos7t=sin2t=cos\left(\frac{\pi}{2}-2t\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}7t=\frac{\pi}{2}-2t+k2\pi\\7t=2t-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\frac{\pi}{18}+\frac{k2\pi}{9}\\t=-\frac{\pi}{10}+\frac{k2\pi}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=cos\left(\frac{\pi}{18}+\frac{k2\pi}{9}\right)\\x=\left(-\frac{\pi}{10}+\frac{k2\pi}{5}\right)\end{matrix}\right.\)
Ý tưởng của người ra đề khá kì quặc, công thức \(cos7a\) kia thực sự là chứng minh rất mất thời gian
giai pt
\(\sqrt{x+3}-\sqrt{x-1}=\sqrt{2x+2}\)
\(\sqrt{x^2-x+4}-x^2+x+2=0\)
\(\sqrt[3]{x+7}+\sqrt[3]{1-x}=2\)
a) \(\sqrt{x+3}-\sqrt{x-1}=\sqrt{2x+2}\)
Điều kiện: \(\hept{\begin{cases}x+3\ge0\\x-1\ge0\\2x+2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge-3\\x\ge1\\x\ge-1\end{cases}\Leftrightarrow x\ge1}\)
\(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-1}\right)^2=\left(\sqrt{2x+2}\right)^2\)
\(\Leftrightarrow x+3-2\sqrt{\left(x+3\right)\left(x-1\right)}+x-1=2x+2\)
\(\Leftrightarrow2x+2-2\sqrt{\left(x+3\right)\left(x-1\right)}=2x+2\)
\(\Leftrightarrow-2\sqrt{\left(x+3\right)\left(x-1\right)}=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\left(l\right)\\x=1\left(n\right)\end{cases}}\)
Vậy \(S=\left\{1\right\}\)
giai cac phuong trinh
a)\(2x^4+5x^3+x^2+5x+2=0\)
b)\(\sqrt{x-1}-\sqrt[3]{2-x}=1\)
c)\(x-\sqrt{x}+1=\sqrt{2x^2-30x+2}\)
d)\(2x^2+3x+7=\left(x-5\right)\sqrt{2x^2+1}\)
e)\(\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-1\)
Giai pt
\(\sqrt{2x+1}-2\sqrt{2-x}=3\sqrt[4]{\left(1-2x\right)\left(x-2\right)}\)
giải các PT sau :
a) \(\left|2x+3\right|-\left|x\right|+\left|x-1\right|=2x+4\)
b) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
c) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
d) \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=4\)
e) \(\sqrt{4x+3}+\sqrt{2x+1}=6x+\sqrt{8x^2+10x+3}-16\)
f)\(\sqrt[3]{x-2}+\sqrt{x+1}=3\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
Giai pt
1) \(\left(x+5\right)\left(2-x\right)=3\sqrt{x^2+3x}\)
2) \(\frac{x}{x+1}-2\sqrt{\frac{x+1}{x}}-3=0\)
3) \(x^2+\sqrt{2x^2+4x+3}=6-2x\)
4) \(x^2+\sqrt{x+5}=5\)
5) \(x^3+4x-\left(2x+7\right)\sqrt{2x+3}=0\)
5) \(ĐK:x\ge-\frac{3}{2}\)
\(x^3+4x-\left(2x+7\right)\sqrt{2x+3}=0\)
\(\Leftrightarrow\frac{x^3+4x}{2x+7}=\sqrt{2x+3}\Leftrightarrow\frac{x^3+4x}{2x+7}-3=\sqrt{2x+3}-3\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x^2+3x+7\right)}{2x+7}=\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{x^2+3x+7}{2x+7}-\frac{2}{\sqrt{2x+3}+3}\right)=0\)
(không có nghiệm thực)
Vậy phương trình có 1 nghiệm duy nhất là 3
1) \(Pt\Leftrightarrow-x^2-3x+10=3\sqrt{x^2+3x}\)( đk: \(x\le-3,x\ge0\)
Đặt \(t=\sqrt{x^2+3x},t\ge0\)
Pt trở thành: \(-t^2-3t+10=0\Leftrightarrow t=2\left(dot\ge0\right)\)
giải \(\sqrt{x^2+3x}=2\Leftrightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)
3) \(x^2+\sqrt{2x^2+4x+3}=6-2x\Leftrightarrow-\sqrt{2x^2+4x+3}=x^2+2x-6\)\(\Leftrightarrow\left(2x^2+4x+3\right)-15=-2\sqrt{2x^2+4x+3}\)
Đặt \(\sqrt{2x^2+4x+3}=t\)(t > 0) thì phương trình trở thành \(t^2-15=-2t\Leftrightarrow t^2+2t-15=0\Leftrightarrow\left(t+5\right)\left(t-3\right)=0\Leftrightarrow\orbr{\begin{cases}t=-5\left(L\right)\\t=3\left(tm\right)\end{cases}}\)
Với t = 3 thì \(\sqrt{2x^2+4x+3}=3\Leftrightarrow2x^2+4x+3=9\Leftrightarrow2x^2+4x-6=0\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)Vậy phương trình có tập nghiệm S = {1; -3}
giai pt :\(2x^3-x^2+\sqrt{2x^3-3x+1}=3x+1+\sqrt[3]{x^2+2}\)
x= 0.761322463768116,
x= 0.369494467346496,
x=1.57660410301179
giai he pt pt(1): x2(y+3)(x+2)-\(\sqrt{2x+3}\)=0 ;pt(2): 4x -4\(\sqrt{2x+3}\) +x3\(\sqrt{\left(y+3\right)^3}\) +9=0