Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Hải Ngọc
Xem chi tiết
Mr Lazy
27 tháng 7 2016 lúc 23:36

a, \(P=\left(x^4-8x^3+16x^2\right)+12x^2-48x+35\)

\(=\left(x^2-4x\right)^2+12\left(x^2-4x\right)+36-1\)

\(=\left(x^2-4x+6\right)^2-1\)

\(=\left[\left(x-2\right)^2+2\right]^2-1\)

\(\ge2^2-1=3\)

Cách khác \(P=\left(x-2\right)^2\left[\left(x-2\right)^2+4\right]+3\ge3\)

Đẳng thức xảy ra khi \(x=2.\)

b, \(xy\le\frac{\left(x+y\right)^2}{4}=9\)

Áp dụng bđt Co6si: \(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)

\(Q\ge\frac{102}{xy}+xy=xy+\frac{81}{xy}+\frac{21}{xy}\ge2\sqrt{xy.\frac{81}{xy}}+\frac{21}{9}=\frac{61}{3}.\)

Dấu bằng xảy ra khi \(x=y=3.\)

Bùi Hải Ngọc
28 tháng 7 2016 lúc 20:11

Mk camon bn nhiều nha =))

Vũ Trọng Khánh
Xem chi tiết
Trần Quang Minh
31 tháng 8 2018 lúc 16:41

\(P=(3x/2+6/x)+(5y/2+10/y)+(x+y)/2 >=6+10+2=18\) 

Vũ Thị Ngọc Chi
Xem chi tiết
oOo Sát thủ bóng đêm oOo
28 tháng 7 2018 lúc 16:27

tích mình với

ai tích mình

mình tích lại

thanks

Nguyễn Thế Công
14 tháng 2 2019 lúc 15:05

Tích mình đi mình tích lại

Nguyễn Huỳnh Minh Thư
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
Nguyễn Lâm Ngọc
Xem chi tiết
Tuyển Trần Thị
7 tháng 2 2018 lúc 18:15

\(\frac{x}{\sqrt{y+z-4}}\)=\(=\frac{2x}{\sqrt{4\left(y+z-4\right)}}\ge\frac{2x}{\frac{y+z-4+4}{2}}=\frac{4x}{y+z}\)

vt \(\ge4\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=4\left(\frac{x^2}{xy+xz}+\frac{y^2}{xy+xz}+\frac{z^2}{xz+yz}\right)\ge4.\frac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}=\frac{2.\left(x+y+z\right)^2}{xy+yz+xz}\)

\(\ge\frac{2\left(x+y+z\right)^2}{\frac{\left(x+y+z\right)^2}{3}}=6\)

dau = xay ra khi x=y=z=4

lethienduc
Xem chi tiết
zZz Cool Kid_new zZz
13 tháng 7 2020 lúc 6:18

Sử dụng AM - GM dạng cộng mẫu :

\(\frac{1}{x+1}+\frac{4}{y+2}+\frac{9}{z+3}\)

\(\ge\frac{\left(1+2+3\right)^2}{x+y+z+1+2+3}\)

\(=\frac{36}{x+y+z+6}\)

\(=\frac{36}{12}=3\)

Đẳng thức xảy ra tại ......

Trên kia là sai lầm thường gawpjjj ( theo mình nghĩ thế tại nhác tìm dấu bằng )

thứ 2 là wolfram alpha bảo không có minimize:

Khách vãng lai đã xóa
Đinh Thị Ngọc Anh
Xem chi tiết
Thắng Nguyễn
15 tháng 3 2017 lúc 20:27

Đặt \(\hept{\begin{cases}2^x=a\\2^y=b\end{cases}}\) thì ta có: \(A=\frac{1+ab}{1+a^2}+\frac{1+ab}{1+b^2}\)

Ta cần chứng minh \(2\) là GTNN của A (khi x=1,02171...;y=1,02171... và x=y=1,04019...)

\(\Leftrightarrow\left(1+ab\right)\left(\frac{1}{1+a^2}+\frac{1}{1+b^2}\right)\ge2\)

Và điều này tương đương với \(\frac{\left(ab-1\right)\left(a-b\right)^2}{\left(a^2+1\right)\left(b^2+1\right)}\ge0\)

Cái này đúng nếu \(ab\ge1\)

Mai Tuấn Kiệt
Xem chi tiết
Dương Lam Hàng
23 tháng 7 2018 lúc 14:54

1) Vì \(\left|x\right|\ge0\left(\forall x\right)\Rightarrow3.\left|x\right|\ge0\Rightarrow A=3.\left|x\right|-2=3.\left|x\right|+\left(-2\right)\ge-2\)

Dấu bằng xảy ra khi: |x| = 0 <=> x = 0

Vậy Amin = -2 khi và chỉ khi x = 0

2) Vì \(\left|x-8\right|\ge0\left(\forall x\right)\Rightarrow B=\left|x-8\right|+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra <=> |x-8| = 0 <=>x - 8 = 0 <=> x = 8

Vậy Bmin = 3/4 khi và chỉ khi x = 8

3) Vì \(\left(x-6\right)^{10}\ge0\left(\forall x\right);\left|x-y\right|\ge0\left(\forall x;y\right)\)

\(\Rightarrow\left(x-6\right)^{10}+\left|x-y\right|+9\ge9\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-6\right)^{10}=0\\\left|x-y\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-6=0\\x-y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=6\\x=y\end{cases}\Leftrightarrow}x=y=6}\)

Vậy GTNN của biểu thức = 9 khi và chỉ khi x = y = 6

oanh cute
25 tháng 7 2018 lúc 5:32

mai tuấn kiệt ok