Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Shuu
Xem chi tiết
Tâm Cao
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 6 2021 lúc 19:03

\(g'\left(x\right)=0\Rightarrow x=0\)

Ta thấy \(g\left(x\right)\) đồng biến trên \(\left(0;+\infty\right)\)

\(\Rightarrow g\left(f\left(x\right)\right)\) đồng biến khi \(f\left(x\right)\ge0\)

\(\Rightarrow g\left(f\left(x\right)\right)\) đồng biến trên \(\left(3;+\infty\right)\) khi \(f\left(x\right)\ge0\) ; \(\forall x>3\)

\(\Leftrightarrow x^2-4x\ge-m\) ; \(\forall x>3\)

\(\Leftrightarrow-m\le\min\limits_{x>3}\left(x^2-4x\right)\)

\(\Rightarrow-m\le-3\Rightarrow m\ge3\)

Kimian Hajan Ruventaren
Xem chi tiết
Ngọc Nhã Uyên Hạ
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 1 2021 lúc 20:13

\(f'\left(x\right)=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Để \(g\left(x\right)_{min}>0\Rightarrow f\left(x\right)=0\) vô nghiệm trên đoạn đã cho

\(\Rightarrow\left[{}\begin{matrix}-m< -2\\-m>7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>2\\m< -7\end{matrix}\right.\)

\(g\left(0\right)=\left|m-1\right|\) ; \(g\left(1\right)=\left|m-2\right|\) ; \(g\left(2\right)=\left|m+7\right|\)

Khi đó \(g\left(x\right)_{min}=min\left\{g\left(0\right);g\left(1\right);g\left(2\right)\right\}=min\left\{\left|m-2\right|;\left|m+7\right|\right\}\)

TH1: \(g\left(x\right)_{min}=g\left(0\right)\Leftrightarrow\left\{{}\begin{matrix}\left|m-2\right|\le\left|m+7\right|\\\left|m-2\right|=2020\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ge\dfrac{5}{2}\\\left|m-2\right|=2020\end{matrix}\right.\) \(\Rightarrow m=2022\)

TH2: \(g\left(x\right)_{min}=g\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}\left|m+7\right|\le\left|m-2\right|\\\left|m+7\right|=2020\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\le\dfrac{5}{2}\\\left|m+7\right|=2020\end{matrix}\right.\) \(\Rightarrow m=-2027\)

Hoàng
Xem chi tiết
Hồng Phúc
12 tháng 3 2021 lúc 13:03

1.

Nếu \(m=0\)\(f\left(x\right)=2x\)

\(\Rightarrow m=0\) không thỏa mãn

Nếu \(x\ne0\)

Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)

Hồng Phúc
16 tháng 4 2021 lúc 6:52

2.

\(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow\dfrac{-\left(x-1\right)^2-4}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow x^2-mx+1>0\forall x\)

\(\Leftrightarrow\Delta=m^2-4< 0\Leftrightarrow-2< m< 2\)

Kết luận: \(-2< m< 2\)

Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Mun Amie
6 tháng 7 2023 lúc 16:04

Đề yêu cầu tìm m sao cho hàm số đồng biến trên từng khoảng xác định K \(\left(-\infty,m\right),\left(m,+\infty\right)\)

\(y'=\dfrac{x^2-2mx+m^2-m+1}{\left(x-m\right)^2}\)

y đồng biến trên K \(\Leftrightarrow x^2-2mx+m^2-m+1\ge0,\forall x\in K\)

\(f\left(x\right)=x^2-2mx+m^2-m+1\ge0,\forall x\in K\) (1)

Nhận xét: f(x) là một parabol hướng lên và min tại \(x=m\)

(1) \(\Leftrightarrow\) \(f\left(m\right)\ge0\) \(\Leftrightarrow1\ge m\)

Vậy...

Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
22 tháng 3 2021 lúc 6:13

b, \(\left\{{}\begin{matrix}x^2-2x-3\le0\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le3\\x^2-2mx+m^2-9\ge0\end{matrix}\right.\)

Yêu cầu bài toán thỏa mãn khi phương trình \(f\left(x\right)=x^2-2mx+m^2-9\ge0\) có nghiệm \(x\in\left[-1;3\right]\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-m^2+9=9>0,\forall m\\-1< m< 3\\f\left(-1\right)=m^2+2m-8\ge0\\f\left(3\right)=m^2-6m\ge0\end{matrix}\right.\)

\(\Leftrightarrow m\in[2;3)\cup(-1;0]\)

Shuu
Xem chi tiết