(a+1/1.3)+(a+1/3.5)+(a+1/5.7)+...+(a+1/23.25)=11.a+(1/3+1/9+1/27+1/81+1/243)
Tìm a
\(\left(a+\frac{1}{1.3}\right)+\left(a+\frac{1}{3.5}\right)+\left(a+\frac{1}{5.7}\right)+...+\left(a+\frac{1}{23.25}\right)=11.a+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right).\)\(\left(a+\frac{1}{1.3}\right)+\left(a+\frac{1}{3.5}\right)+...+\left(a+\frac{1}{23.25}\right)=11a+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
\(\Rightarrow12a+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=11a+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)\)(1)
Ta có \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{23.25}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}\right)=\frac{1}{2}\left(1-\frac{1}{25}\right)=\frac{1}{2}.\frac{24}{25}=\frac{12}{25}\)
Lại có \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}=\frac{3\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\right)}{2}\)
\(=\frac{1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-\frac{1}{3^4}-\frac{1}{3^5}}{2}=\frac{1-\frac{1}{3^5}}{2}=\frac{1}{2}-\frac{1}{3^5.2}\)
Khi đó (1) <=> \(12a-\frac{12}{25}=11a+\frac{1}{2}-\frac{1}{3^5.2}\)
=> \(a=\frac{12}{25}+\frac{1}{2}-\frac{1}{3^5.2}=\frac{49}{50}-\frac{1}{3^5.2}=\frac{49}{50}-\frac{1}{486}=\frac{23764}{24300}\)
Gọi \(A=\left(a+\frac{1}{1.3}\right)+\left(a+\frac{1}{3.5}\right)+\left(a+\frac{1}{5.7}\right)+...+\left(a+\frac{1}{23.25}\right)\)
\(\Rightarrow A=12a+\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{23.25}\right)\)
\(\Rightarrow A=12a+\left[\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{23.25}\right)\right]\)
\(\Rightarrow A=12a+\left[\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}\right)\right]\)
\(\Rightarrow A=12a+\left[\frac{1}{2}\left(1-\frac{1}{25}\right)\right]\)
\(\Rightarrow A=12a+\left(\frac{1}{2}.\frac{24}{25}\right)\)
\(\Rightarrow A=12a+\frac{12}{25}\)
Gọi \(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(\Rightarrow B=\frac{1}{1.3}+\frac{1}{3.3}+\frac{1}{9.3}+\frac{1}{27.3}+\frac{1}{81.3}\)
\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}\)
\(\Rightarrow3B-B=1-\frac{1}{243}\)
\(\Rightarrow2B=\frac{242}{243}\)
\(\Rightarrow B=\frac{121}{243}\)
\(\Rightarrow A=11a+B\)
\(\Rightarrow12a+\frac{12}{25}=11a+\frac{121}{243}\)
\(\Leftrightarrow12a-11a=\frac{121}{243}-\frac{12}{25}\)
\(\Leftrightarrow a=\frac{109}{6075}\)
a)Tìm số nguyên dương n thỏa mãn:
\(\frac{1}{2}.\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n.\left(n+2\right)}\right)=\frac{2013}{2014}\)
b)tìm a sao cho
\(\left(a+\frac{1}{1.3}\right)+\left(a+\frac{1}{3.5}\right)+\left(a+\frac{1}{5.7}\right)+...+\left(a+\frac{1}{23.25}\right)=11.a+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)\)
A=2/1.3-2/3.5-2/5.7-...-2/19.21-2/21.23-2/23.25-1/27
A=\(\dfrac{2}{1.3}-\dfrac{2}{3.5}-\dfrac{2}{5.7}-.....-\dfrac{2}{23.25}-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+....+\dfrac{2}{23.25}\right)-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+......+\dfrac{1}{23}-\dfrac{1}{25}\right)-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\left(\dfrac{1}{3}-\dfrac{1}{25}\right)-\dfrac{1}{27}\)
A=\(\dfrac{2}{3}-\dfrac{22}{75}-\dfrac{1}{27}\)
A=\(\dfrac{227}{675}\)
Rút gọn biểu thức
A=-2/1.3-2/3.5-2/5.7-....-2/19.21-2/23.25-2/25.27-1/27
A=........
\(A=-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{25.27}\right)-\frac{1}{27}\)
\(=-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{25}-\frac{1}{27}\right)-\frac{1}{27}\)
\(=-\left(1-\frac{1}{27}\right)-\frac{1}{27}\)
\(=-1+\frac{1}{27}-\frac{1}{27}\)
\(=-1\)
rút gọn biểu thức A =-2/1.3 -2/3.5 -2/5.7 -...........-22/19.21 -2/23.25- -5/25.27 -1/27
rút gọn biểu thức
A= -2/1.3-2/3.5-2/5.7-..-2/19.21-2/23.25-2/25.27-1/27
ta được A=
\(A=-\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{25.27}\right)-\frac{1}{27}\)
\(=-\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{25}-\frac{1}{27}\right)-\frac{1}{27}\)
\(=-\left(1-\frac{1}{27}\right)-\frac{1}{27}\)
\(=-1+\frac{1}{27}-\frac{1}{27}\)
\(=-1\)
sao làm như vậy được??? 2/19.21 và 2/23.25 bn k làm được như thế đâu vì nó k cùng quy luật với các ps kia
(x + \(\frac{1}{1.3}\)) + (x + \(\frac{1}{3.5}\)) + (x + \(\frac{1}{5.7}\)) + ... + (x + \(\frac{1}{23.25}\)) = 11 . x + (\(\frac{1}{3}\)+ \(\frac{1}{9}\)+ \(\frac{1}{27}\)+ \(\frac{1}{81}\)+ \(\frac{1}{243}\))
Mình cần gấp nhé ^^
TA CÓ THỂ THẤY, VẾ TRÁI CÓ: 12 CẶP
=> \(12x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=11x+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)
<=> \(x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\) (****)
Ta xét: \(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\)
=> \(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{23.25}\)
=> \(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}\)
=> \(2A=1-\frac{1}{25}=\frac{24}{25}\)
=> \(A=\frac{12}{25}\)
Ta tiếp tục xét: \(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)
=> \(3B=1+\frac{1}{3}+...+\frac{1}{3^4}\)
=> \(3B-B=\left(1+\frac{1}{3}+...+\frac{1}{3^4}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\right)\)
=> \(2B=1-\frac{1}{3^5}=\frac{242}{243}\)
=> \(B=\frac{121}{243}\)
THAY CÁC GIÁ TRỊ A; B VÀO PT (****) TA ĐƯỢC:
=> \(x+\frac{12}{25}=\frac{121}{243}\)
<=> \(x=\frac{121}{243}-\frac{12}{25}=\frac{109}{6075}\)
típ nha m.n
18) (2+x ) +(4+x)+(6+x )+...+(52+x) = 780
(1/3.5 +1/5.7+1/7.9 +...+1/19.21).x = 9/7
20) (x+1)+(x+2)+...+(x+100)=5750
22) (x+1/1.3)+(x.1/3.5)+(x+1/5.7)+...+(x+23.25)= 11.x+(1/3+1/9+1/27+1/81+1/243 )
23) (1/1.2.3 +1/2.3.4+....+1/8.9.10).x= 23/45
\(\sqrt{ }\) | |||||||
\(\left(2+x\right)+\left(4+x\right)+\left(6+x\right)+...+\left(52+x\right)=780\)
\(\Leftrightarrow26x+\left(2+4+6+...+52\right)=780\)
\(\Leftrightarrow26x+\left[\left(52+2\right).26:2\right]=780\)
\(\Leftrightarrow26x+702=780\)
\(\Leftrightarrow26x=78\)
\(\Leftrightarrow x=\frac{78}{26}=3\)
(2+x)+(4+x)+(6+x)+...+(52+x)=780
⇔26x+(2+4+6+...+52)=780
⇔26x+[(52+2).26:2]=780
⇔26x+702=780
⇔26x=78
⇔x=7826 =3