Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vi Đức Anh
Xem chi tiết
Binh Hang
Xem chi tiết
Đỗ Nhất Duy
Xem chi tiết
Lê Tài Bảo Châu
Xem chi tiết
Linh Linh
3 tháng 3 2019 lúc 13:17

Nếu Đặt p là nửa chu vi => p = (a + b + c)/2 => 2p = a + b + c 
=> p - a = (a + b + c)/2 - a 
=> p - a = (b + c + a - 2a)/2 
=> p - a = (b + c - a)/2 
=> 2(p - a) = b + c - a (1) 
Tương tự ta chứng minh được: 
2(p - b) = a + c - b (2) 
2(p - c) = a + b - c (3) 
Từ (1); (2) và (3) => 1/(a + b - c) + 1/(b +c - a) +1/(c +a - b) 
= 1/[ 2(p - c) ] + 1/[ 2(p - a) ] + 1/[ 2(p - b) ] 
=1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] 
Bây giờ ta đã đưa bài toán về chứng minh 
1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c 
Ta có: (x - y)² ≥ 0 
<=> x² - 2xy + y² ≥ 0 
<=> x² - 2xy + y² + 4xy ≥ 4xy 
<=> x² + 2xy + y² ≥ 4xy 
<=> (x + y)² ≥ 4xy 
=> với x + y ≠ 0 và xy ≠ 0 
=> (x + y)²/(x+ y) ≥ 4xy/(x + y) 
=> (x + y) ≥ 4xy/(x + y) 
=> (x + y)/xy ≥ (4xy)/[xy(x + y)] 
=> 1/x + 1/y ≥ 4/(x + y) (*) 
Áp dụng (*) với x = p - a và y = p - b ta được: 
1/(p - a) + 1/(p - b) ≥ 4/(p - a + p - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/(2p - a - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/(a + b + c - a - b) 
=> 1/(p - a) + 1/(p - b) ≥ 4/c (4) 
Chứng minh tương tự ta được: 
1/(p - a) + 1/(p - c) ≥ 4/b (5) 
1/(p - b) + 1/(p - c) ≥ 4/a (6) 
Cộng vế với vế của (4);(5) và (6) ta được: 
1/(p - a) + 1/(p - b) + 1/(p - a) + 1/(p - c) + 1/(p - b) + 1/(p - c) ≥ 4/c + 4/b + 4/a 
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4/c + 4/b + 4/a 
=> 2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 4(1/a + 1/b + 1/c) 
=> 1/(p - a) + 1/(p - b) + 1/(p - c) ≥ 2(1/a + 1/b + 1/c) 
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/2.( 2(1/a + 1/b + 1/c) ) 
=> 1/2.[ 1/(p - a) + 1/(p - b) + 1/(p - c) ] ≥ 1/a + 1/b + 1/c 
Dấu bằng xảy ra <=> a = b = c. 

Sai thì thôi nha !!! k mk nha

Girl
3 tháng 3 2019 lúc 13:19

\(a\ge b;a\ge c\Rightarrow a+a+a\ge a+b+c\Rightarrow3a\ge a+b+c\Rightarrow\frac{a+b+c}{3}\le a\) (1)

bđt tam giác: \(a< b+c\Rightarrow a+a< a+b+c\Rightarrow2a< a+b+c\Rightarrow a< \frac{a+b+c}{2}\)(2)

(1); (2) suy ra đpcm

Lê Tài Bảo Châu
3 tháng 3 2019 lúc 13:24

Không hiểu cách làm của bạn. Bài làm này chỉ cần bình thường thôi

 Ta có: \(a\ge b,a\ge c\)

          \(\Rightarrow b+c\le2a\)

          \(\Rightarrow a+b+c\le3a\)

           \(\Rightarrow\frac{a+b+c}{3}\le a\)  (1)

Xét \(\Delta ABC\)có \(a< b+c\)

                            \(\Rightarrow2a< a+b+c\)

                            \(\Rightarrow a< \frac{a+b+c}{2}\)  (2)

Từ (1) và (2) \(\Rightarrow\frac{a+b+c}{3}\le a< \frac{a+b+c}{2}\)( đpcm)

              ( a<b+c vì trong một tam giác tổng độ dài 2 cạnh bao giờ cũng lớn hơn 1 một cạnh )

Tuyển Trần Thị
Xem chi tiết
alibaba nguyễn
25 tháng 12 2017 lúc 14:16

Chuẩn hóa: \(a+b+c=1\)

Vì a, b, c là 3 cạnh của tam giác nên ta có: \(a,b,c\in\left(0;\frac{1}{2}\right)\)

Bài toán ban đầu trở thành:

\(P=\left(\frac{4}{1-a}-\frac{1}{a}\right)+\left(\frac{4}{1-b}-\frac{1}{b}\right)+\left(\frac{4}{1-c}-\frac{1}{c}\right)\le9\)

Ta chứng minh: 

\(\frac{4}{1-x}-\frac{1}{x}\le18x-3\)

\(\Leftrightarrow\left(3x-1\right)^2\left(1-2x\right)\ge0\) (đúng)

Áp dụng bài toán ta được

\(P\le18\left(a+b+c\right)-9=9\)

Vậy ......

Nguyen Thi Phuong Anh
25 tháng 12 2017 lúc 14:12

Nhan 2 ve voi a+b+c se ra

Trung Đức Đinh Công
Xem chi tiết
Dương Thiên Tuệ
14 tháng 2 2018 lúc 19:41

a,b,c là độ dài 3 cạnh 1 tam giác nên a+b>c, b+c>a,c+a>b

Ap dụng \(\frac{x}{y}< \frac{x+z}{y+z}\) với \(x< y\Rightarrow\)\(\frac{a}{b+c}< \frac{a+a}{b+c+a}=\frac{2a}{a+b+c}\)

Tương tự \(\frac{b}{c+a}< \frac{2b}{a+b+c}\)

               \(\frac{c}{a+b}< \frac{2c}{a+b+c}\)

Cộng 3 bđt được đpcm

Lê Tài Bảo Châu
Xem chi tiết
Bolbbalgan4
Xem chi tiết
Bi Bi
Xem chi tiết
Akai Haruma
27 tháng 6 2019 lúc 17:10

Lời giải:

Vì $a,b,c$ là 3 cạnh tam giác nên $a+b-c,a+c-b, b+c-a>0$
Áp dụng BĐT Cauchy dạng \(xy\leq \left(\frac{x+y}{2}\right)^2\) ta có:

\((a+b-c)(a+c-b)\leq \left(\frac{a+b-c+a+c-b}{2}\right)^2=a^2\)

\((a+b-c)(b+c-a)\leq \left(\frac{a+b-c+b+c-a}{2}\right)^2=b^2\)

\((b+c-a)(a+c-b)\leq \left(\frac{b+c-a+a+c-b}{2}\right)^2=c^2\)

Nhân theo vế các BĐT trên:

\([(a+b-c)(a+c-b)(b+c-a)]^2\leq (abc)^2\)

\(\Rightarrow (a+b-c)(a+c-b)(b+c-a)\leq abc\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$.