Cho 1 tam giác vuông ABC, ^A = 90 độ. M là trung điểm BC. CM: AM = 1 / 2 BC
cho tam giác ABC vuông tại A. M là trung điểm BC. Trên tia đối của tia MA lấy điểm D sao cho AM=MD. a) C/m AB=CD, AB // CD, Góc ACD = 90 độ. b)C/m tam giác ABC= tam giác DCA. c)AM=BC/2
Cho tam giác ABC có góc A nhọn, phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Gọi M là trung điểm của BC. Cm AM = 1/2 DE và AM vuông góc DECho tam giác ABC có góc A nhọn, phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Gọi M là trung điểm của BC. Cm AM = 1/2 DE và AM vuông góc DECho tam giác ABC có góc A nhọn, phía ngoài tam giác vẽ các tam giác vuông cân tại A là ABD, ACE. Gọi M là trung điểm của BC. Cm AM = 1/2 DE và AM vuông góc DE
Cho tam giác ABC , M là trung điểm của cạnh BC
a) góc A = 90 độ , Chứng minh : AM=1/2 BC
b)góc A > 90 độ . Chứng minh AM < 1/2 BC
c) góc A < 90 độ . Chứng minh AM > 1/2 BC
Cho tam giác ABC,M là trung điểm cạnh BC.CMR:
a,Nếu góc A = 90 độ thì AM=1/2 BC
b,Nếu góc A > 90 độ thì AM < 1/2 BC
c,Nếu góc A < 90 độ thì AM > 1/2 BC
Cho tam giác ABC vuông tại A. Trung tuyến AM, trên tia đối của tia MA lấy điểm D sao cho MD=MA.
a) C/M tam giác ABC= tam giác BMD
b) C/M Góc ABD=90 độ
c) C/M AM= 1/2 BC
cho tam giác ABC vuông tại A,gọi M lá trung điểm của BC .Trên tia đối của MA lấy D sao cho MD=MA
a) c/m rằng tam giác AMC= tam giác DMB
b)c/m góc ABD=90 độ
c)c/m AM=1/2 BC
a , Xét \(\Delta AMC\)và \(\Delta DMB\)có :
BM = MC ( M là trung điểm của BC )
AM = MD ( giả thiết )
\(\widehat{AMC}=\widehat{BMD}\)( đối đỉnh )
=> \(\Delta AMC\)= \(\Delta DMB\) ( c.g.c )
=> BM = MA ( 2 cạnh tương ứng ) ; \(\widehat{MCA}=\widehat{MDB}\) ( 2 góc tương ứng )
b , Vì \(\widehat{MCA}=\widehat{MDB}\)= > \(\widehat{ADB}=\widehat{BCA}\)
Vì BM = MA => \(\Delta AMB\)cân tại M .
=> \(\widehat{MAB}=\widehat{MBA}\)
Ta có : \(\widehat{ABC}+\widehat{ACB}=90^0\)( \(\Delta ABC\perp A\))
hay \(\widehat{ABM}+\widehat{ACM}=90^0\)
vì \(\widehat{MCA}=\widehat{MDB}\); \(\widehat{MAB}=\widehat{MBA}\)
=> \(\widehat{BAM}+\widehat{BDM}=90^0\)
=> \(\widehat{BAD}=90^0\)
c , Vì AM = BM
mà BM = \(\frac{1}{2}BC\)
=> AM = \(\frac{1}{2}BC\)
Cho tam giác ABC vuông tại A. M là trung điểm của BC. Trên tia AM lấy điểm n sao cho M là trung điểm của AN. Chứng minh: a. CN - AB, CM // AB b. Am = 1/2 BC.
1. Cho tam giác ABC vuông tại A gọi M là trung điểm của BC trên tia AM lấy E sao cho M là trung điểm của AE
a) CM: AB vuông góc với AE
b) CM: AM=1/2 BC
c) Tính AE biết AB=3cm, AC=4cm
Trên nửa mặt phẳng bờ là đường thẳng đi qua hai điểm B, C. Vẽ tia Bx sao cho góc CBx = 70 độ, vẽ tia Cy sao cho góc BCy = 110 độ
a) Chỉ ra các cặp góc bù nhau
b) Qua hình vẽ, dự đoán gì về 2 tia Bx, Cy ?
LÀM HỘ EM ĐƯỢC KHÔNG Ạ ? EM CẢM ƠN NHIỀU Ạ
Cho tam giác ABC. Góc A = 90 độ có AB<AC.Gọi M là trung điểm của cạnh BC, trên tia đối của tia MA lấy điểm D sao cho MD=MA. Kẻ AH vuông góc với BC(H thuộc BC) trên tia AH lấy điểm E sao cho H là trung điểm của AE
a, CM: CD//AB và CD=BE
b, CD vuông góc với BC
c, AM = 1/2 BC
d, Cho AM=5cm, AC= 8cm. Tính AB?
a) xét tam giác ABM = DCM( c-g-c ) (*)
=) * góc BAD = góc ADC
=) AB // CD
* AB = DC ( 1 )
xét tam giác ABH= EBH ( c-g-c )
=) AB = BE ( 2 )
từ (1) và (2)=) CD=BE
b) ( đề sai, phải là CD vuông góc AC mới đúng )
từ (*) =) góc ABM = DCM
mà tg ABC vuông tại A=) ABM+ACB=90 độ
suy ra góc DCM+ACB=90 độ
=) CD vuông góc vs AC
c ) áp dụng trung tuyến cạnh huyền =) AM=1/2BC
d) Do AM = 1/2BC
=) BC = 10cm
áp dụng định lý py-ta-go cho tg ABC vuông tại A ta có:
AB^2 + AC^2 = BC^2
AB^2 = 36
AB = 6cm
Bài 1: Cho tam giác ABC, kẻ AH vuông góc với BC, BH=9cm, HC=16cm, tgC=0,75.Trên AH lấy điểm O sao cho OH=2cm
a) CM: ABC là tam giác vuông
b) Trên cạnh AB lấy điểm M, trên OB lấy điểm P và trên OC lấy điểm N sao cho AM/AB=OP/OB=ON/OC=2/5. Tính độ dài các cạnh và số đo các góc của tam giác MPN
Bài 2:Cho tam giác vuông ABC( A=90 độ) Kẻ đường thẳng song song với cạnh BC cắt ccs cạnh AB,AC tại M,N, MB=12cm, NC=9cm, trung điểm của MN và BC là E và F
a) CM: 3 điểm A,E,F thẳng hàng
b) Trung điểm BN là G. Tính độ dài các cạnh và số đo các góc của tam giác EFG
c) CM: Tam giác EFG đồng dạng tam giác ABC
Bài 3: Cho tam giác ABC, A= 90 độ. Từ trung điểm E của cạnh AC kẻ EF vuông góc với BC. Nối AF và BE
a) CM; AF= BE.cos C
b) Biết BC=10cm, sinC=0,6. Tính diện tích tứ giác ABFE
c) AF và BE cắt nhau tại O. Tính SinAOB
Bạn nào giúp mk với ạ huhu cảm ơn nhiều nhiều
Câu hỏi của Pham Van Hung - Toán lớp 9 - Học toán với OnlineMath
Bạn tham khảo câu 2 tai link này nhé!