Em cần gấp với ah ! Cho hình vuông MNPQ, điểm A bất kỳ trên cạnh NP. Qua M vẽ đường thẳng vuông góc với MA cắt PQ và PN lần lượt tại B và C a, C/m tam giác MAB cân b, C/m MB^2= BQ.A c, Cho MN=15cm, AN=8cm. Tính CN,CM
Bài 5: Cho tam giác MNP cân tại M. Kẻ MK PN (K NP)
a) Chứng minh: MNK = MPK và MK là đường trung trực của đoạn thẳng NP
b) Trên tia đối của tin NP lấy điểm A, trên tia đối của tia PN lấy điểm B sao cho AN = BP.
Chứng minh: MA = MB
c) Lấy điểm D bất kỳ trên cạnh MA (D khác A, M). Qua D, kẻ đường thẳng song song với AB
cắt MB tại E. Chứng minh: MDE cân
Ai giải nhanh giúp mk vs mk tick cho
a) Xet tam giac MNK va tam giac MPK co:
Goc MKP = goc MKN = 90 do ( MK vuong goc voi NP ) (1)
MK ( canh chung ) (2)
MN = MP ( tam giac MNP can tai M ) (3)
Tu (1), (2), (3) => Tam giac MNK = tam giac MPK ( canh huyen - canh goc vuong )
b) Ta co: goc MNK = goc MPK ( 2 goc o day cua tam giac can MNP ) va
goc MPK + goc MPB = 180 do ( ke bu ); goc MNK + goc MNA = 180 do ( ke bu )
ma goc MPK = goc MNK ( cmt ) => goc MPB = goc MNA
Xet tam giac MNA va tam giac MPB co:
PB = NA ( gt ) (1)
MP = MN ( tam giac MNP can tai M ) (2)
goc MPB = goc MNA ( cmt ) (3)
Tu (1), (2) ,(3) => tam giac MNA = tam giac MPB ( c.g.c )
=> MA = MB ( 2 canh tuong ung )
c) Ta co: DE // AB ma goc MDE va goc MAB la 2 goc dong vi => goc MDE = goc MAB
MED MBA MED MBA
Vay tam giac MDE la tam giac can ( tam giac MDE co 2 goc bang nhau )
Cho hình thang cân ABCD (AB//CD). Từ một điểm bất kỳ trên tia đối của tia AD vẽ đường thẳng song song với cạnh BC cắt các đường thẳng AB; CD lần lượt tại E và F. C/m:
a) Tam giác AEF là tam giác đều.
b) Vẽ AG vuông góc với EF. C/m tứ giác ABCG là hình thang cân.
a) Xét tam giác ABC và tam giác BAD, ta có:
AB: cạnh chung
AC=AD (ABCD:hình thang cân)
BC=AD (ABCD: hình thang cân)
=>Tam giác ABC = tam giác BAD (c-c-c)
=>\(\widehat{ACB}\)=\(\widehat{BDA}\)(2 góc t/ứng)
Ta có:
\(\widehat{ACD=}\widehat{ACB}\)+\(\widehat{BCD}\)
BDC^ = BDA^ + ADC^
ACD^ = BDC^ (ABCD: hình thang cân)
ACB^ = BDA^ (cmt)
=>BCD^ = ADC^
Ta lại có AB//CD (gt):
=> ABC^ = BCD^ (2 góc sole trong)
BAD^ = ADC^ (2 góc sole trong)
BCD^ = ADC^ (cmt)
=> ABC^ = BAD^
Ta có ME//BC (gt):
=> MEA^ = ABC^ (2 góc sole trong)
Mà ABC^ = BAD^ (cmt)
=> MEA^ = BAD^
Mặt khác: MAE^ = BAD^ ( 2 góc đối đỉnh)
=> MEA^ = MAE^
=> Tam giác MAE cân tại M.
MIK xin lỗi, mik đánh sai đề bài, sửa lại như sau:
a) Tam giác MAE cân
b) AF = DE
b) Ta có AB//CD (gt):
Mà AB và AE đối nhau
FD và CD trùng nhau
=> EA//FD (1)
Ta lại có MF//BC (gt):
=> EFD^ = BCD^ (2 góc đồng vị)
Mà BCD^ = ADC^ (cmt)
=> EFD^ = ADC^ (2)
Từ (1) và (2), ta có:
Tứ giác EADF là hình thang cân
=> AF = DE
1 Cho tam giác ABC cân tại A đường cao AH. M là một điểm bất kì trên cạnh BC. Kẻ đường thẳng qua M và song song với AH cắt AB và AC lần lượt tại N và Q
a, CM tam giác ANQ cân
b, Tính các góc của tam giác ANQ biết góc ABC=70
c,Kẻ AI vuông góc với MQ. CM AI song song với BC và AI=MH
2 Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm M trên tia đối của tia CA lấy N sao cho AM+AN=2AB. CMR:
a, BM=CN
b,BC cắt MN tại trung điểm I của MN
Cho tam giác ABC vuông cân tại A. Điểm I bất kỳ trên cạnh AB. Qua I kẻ đường thẳng vuông góc với BC cắt BC và AC lần lượt ở M và E. CI cắt BE ở F. a) chứng minh CF vuông góc với BE. b) kẻ AH vuông góc với BC. Trên tia đối của tia HA lấy điểm D sao cho HA=HD. Chứng minh gics BDC bằng 90 độ c) chứng minh góc IFM bằng 45 độ. C) chứng minh F,M,D thẳng hàng
Cho tam giác ABC vuông cân tại A. Qua A vẽ đường thẳng d sao cho B và C cùng thuộc nửa mặt phẳng bờ d . Vẽ BH và CK cùng vuông góc với d ( H và K thuộc d ) . Trên AB và AC lấy D và E sao cho AD = AE . Qua D và A ve đường thẳng vuông góc với BE cắt BC lần lượt tại I và J .
a, cm AH = CK
b. gọi M là trung điểm của BC . xác định dạng của tam giác MHK
c.Cm IJ=JC
d. Lấy điểm N bất kỳ thuộc AC . Gọi P và Q thứ tự là trung điểm của BN và AC. Qua A vẽ đường thẳng vuông góc với PQ . Qua C vẽ đường thẳng vuông góc với AC chúng cắt nhau tại S. Tính goc SNC
BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:
a) ∆ABE = ∆ADC b) Góc BMC = 120o
Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).
a) Chứng minh: EM + HC = NH.
b) Chứng minh: EN // FM.
Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.
Chứng minh rằng : Góc PCQ = 45o
Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.
a) Chứng minh rằng: BE = CD; AD = AE.
b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.
Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:
a) DM = EN
b) Đường thẳng BC cắt MN tại trung điểm I của MN.
c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
Cho hình vuông MNPQ , lấy điểm E thuộc cạnh MQ , điểm F thuộc cạnh NP sao cho ME = PF . Các đường thẳng MF và NE cắt đường thẳng PQ lần lượt tại C và B . Kéo dài MB ; NC cắt nhau tại A . CMR : tam giác abc là tam giác vuông
Gợi ý thôi cx được nhưng mà gợi ý theo kiểu chi tiết nhé , đừng bảo là kẻ cái này cái nọ rồi tự giải thì mik chịu :D
1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?
3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.
5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM
bạn đăng từng bài lên 1 đi
mik giải dần cho
Cho DABC vuông tại C . Trên cạnh AB lấy điểm D sao cho AD = AB. Kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I.
a) Chứng minh AE là phân giác góc CAB
b) Chứng minh AD là trung trực của CD
c) So sánh CD và BC
d) M là trung điểm của BC, DM cắt BI tại G, CG cắt DB tại K. Chứng minh K là trung điểm của DB.
GIÚP MK VS MỌI NGỪI ƯI, 5H MK NỘP R MÀ VẪN CHX BT LM. THANKS IN ADVANCE.
Cho hình vuông MNPQ. LẤY điểm A trên PQ (A khác PQ). B là giao điểm của MA và NP. Qua M kẻ đường thẳng vuông góc với AM cắt PQ tại C. Kẻ QD vuông góc với AM, QE vuông góc với MC, F là trung điểm của AC, MF cắt ED tại I. CMR:
a) Tam giác MBC vuông cân
b) 3 điểm N, Q và trung điểm của BC là 3 điểm thẳng hàng
c) 1/MI=1/QA+1/QC