Hình thang vuông ABCD (góc A=góc D=90°) có AB=4cm, CD=9cm, BC=13cm. Tính AD
Hình thang vuông ABCD (góc A=góc D=90°) có AB=4cm, CD=9cm, BC=13cm. Tính AD
Từ B kẻ BH _|_DC. Ta có HC=DC-AB=5.
Từ đó tính được BH = \(\sqrt{13^2-5^2}=12\)
Vậy AD=12cm
Bài 1: Hình thang ABCD (AB//CD) có AB=AD+BC. Chứng minh rằng các tia phân giác của các góc C và D gặp nhau tại 1 điểm thuộc đáy AB
Bài 2: Hình thang vuông ABCD (góc A = góc D= 90°)có AB =4cm, CD=9cm, BC=13cm. Tính AD
Bài 3: hình thang vuông ABCD (góc A=góc D=90°)có AB =9cm,CD=15cm, AC=17cm. Tính độ dài cạnh bên
Cho hình thang vuông ABCD có ∠ A = ∠ D = 90 ° , AB = 4cm, BC = 13cm, CD = 9cm. Tính độ dài AD
Kẻ BE ⊥ CD
Suy ra tứ giác ABED là hình chữ nhật
Ta có: AD = BE
AB = DE = 4 (cm)
Suy ra: CE = CD – DE = 9 – 4 = 5 (cm)
Áp dụng định lí Pitago vào tam giác vuông BCE ta có :
B C 2 = B E 2 + C E 2
Suy ra : B E 2 = B C 2 - C E 2 = 13 2 - 5 2 = 144
BE = 12 (cm)
Vậy: AD = 12 (cm)
Cho hình thang ABCD, AB//CD có góc A=góc D= 90 độ, AB=4cm, CD=9cm, BC=13cm. M là trung điểm của AD. Kẻ BK vuông góc với CD tại K.
a) Tứ giác ABKD là hình gì? Tính KC, BK, AD và AM
b) Chứng minh tam giác ABM đồng dạng với tam giác DMC
c) Tính góc BMC
Bài 1: Cho hình thang vuông ABCD có góc A = góc D = 90o , AB = 4cm , CD = 9cm. Tính BD (biết BD vuông góc với BC)
Bài 2: Cho hình thang ABCD , AB//CD , BD là đường cao của hình thang, góc A + góc C = 90o , AB= 1cm, CD= 3cm. Tính AD và BC
Bài 3: Cho hình chữ nhật ABCD, AB= 4cm, AD= 3cm. Gọi E và F là hình chiếu của A và C trên BD. Tính EF
Bài 1: Cho hình thang vuông ABCD có góc A = góc D = 90o , AB = 4cm , CD = 9cm. Tính BD (biết BD vuông góc với BC)
Bài 2: Cho hình thang ABCD , AB//CD , BD là đường cao của hình thang, góc A + góc C = 90o , AB= 1cm, CD= 3cm. Tính AD và BC
Bài 3: Cho hình chữ nhật ABCD, AB= 4cm, AD= 3cm. Gọi E và F là hình chiếu của A và C trên BD. Tính EF
Bài 1: Cho hình thang vuông ABCD có góc A = góc D = 90o , AB = 4cm , CD = 9cm. Tính BD (biết BD vuông góc với BC)
Bài 2: Cho hình thang ABCD , AB//CD , BD là đường cao của hình thang, góc A + góc C = 90o , AB= 1cm, CD= 3cm. Tính AD và BC
Bài 3: Cho hình chữ nhật ABCD, AB= 4cm, AD= 3cm. Gọi E và F là hình chiếu của A và C trên BD. Tính EF
Cho hình thang vuông ABCD ( Góc A= Góc D=90) , AB=4cm,BC=13cm,CD=9cm
a)TÍnh AD
b)C/m: AD tiếp xúc với đường tròn có đường kính là BC
Cho hình thang vuông ABCD có ∠ A = ∠ D = 90 ° , AB = 4cm, BC = 13cm, CD = 9cm. Chứng minh rằng đường thẳng AD tiếp xúc với đường tròn có đường kính là BC
Gọi I là trung điểm của BC
Ta có: IB = IC = (1/2).BC = (1/2).13 = 6,5 (cm) (1)
Kẻ IH ⊥ AD. Khi đó HI là đường trung bình của hình thang ABCD.
Từ (1) và (2) suy ra : IB = IH = R
Vậy đường tròn (I ; BC/2 ) tiếp xúc với đường thẳng AD