Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phan thị minh anh
Xem chi tiết
zxcvbnm
Xem chi tiết
bùi huyền trang
Xem chi tiết
Minh Nguyen
5 tháng 3 2020 lúc 15:05

\(ĐKXĐ:x\ne\pm3\)

\(P=\left(\frac{x^2-3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)

\(\Leftrightarrow P=\left(\frac{x^2-3x}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)

\(\Leftrightarrow P=\frac{\left(x^2-3x\right)+3\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)

\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x^2+9\right)}:\frac{\left(x-3\right)^2}{\left(x-3\right)\left(x^2+9\right)}\)

\(\Leftrightarrow P=\frac{1}{x+3}:\frac{x-3}{x^2+9}\)

\(\Leftrightarrow P=\frac{x^2+9}{\left(x+3\right)\left(x-3\right)}\)

Khách vãng lai đã xóa
꧁WღX༺
Xem chi tiết
Nguyễn Ngọc Mai Anh
Xem chi tiết
Đinh Đức Hùng
11 tháng 8 2017 lúc 19:05

\(A=\left(\frac{3-x}{x+3}.\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)

\(=\left[\frac{-\left(x-3\right)}{x+3}.\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right].\frac{x+3}{3x^2}\)

\(=\left[\frac{-\left(x-3\right)\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)^2}+\frac{x}{x+3}\right].\frac{x+3}{3x^2}\)

\(=\left(-1+\frac{x}{x+3}\right).\frac{x+3}{3x^2}\)

\(=\frac{-x-3+x}{x+3}.\frac{x+3}{3x^2}=\frac{-3}{x+3}.\frac{x+3}{3x^2}=\frac{-1}{x^2}\)

b ) Để \(A=-\frac{1}{x^2}< 0\forall x\ne0\)  

Vậy \(x\ne0\) thì \(A< 0\)

Nguyễn Huệ Lam
Xem chi tiết
Nguyễn Huệ Lam
Xem chi tiết
alibaba nguyễn
10 tháng 8 2017 lúc 15:30

\(A=\frac{x^2+5x+6+x\sqrt{9-x^2}}{3x-x^2+\left(x+2\right)\sqrt{9-x^2}}\)

\(=\frac{\left(x+2\right)\left(x+3\right)+x\sqrt{\left(3-x\right)\left(3+x\right)}}{x\left(3-x\right)+\left(x+2\right)\sqrt{\left(3-x\right)\left(3+x\right)}}\)

\(=\frac{\left(x+2\right)\left(x+3\right)+x\sqrt{\left(3-x\right)\left(3+x\right)}}{x\left(3-x\right)+\left(x+2\right)\sqrt{\left(3-x\right)\left(3+x\right)}}\)

\(=\frac{\sqrt{3+x}\left(\left(x+2\right)\sqrt{x+3}+x\sqrt{3-x}\right)}{\sqrt{3-x}\left(\left(x+2\right)\sqrt{x+3}+x\sqrt{3-x}\right)}\)

\(=\frac{\sqrt{3+x}}{\sqrt{3-x}}\)

alibaba nguyễn
10 tháng 8 2017 lúc 15:35

\(B=\frac{x^2-5x+6+3\sqrt{x^2-6x+8}}{3x-12+\left(x-3\right)\sqrt{x^2-6x+8}}\)

\(=\frac{\left(x-3\right)\left(x-2\right)+3\sqrt{\left(x-4\right)\left(x-2\right)}}{3\left(x-4\right)+\left(x-3\right)\sqrt{\left(x-4\right)\left(x-2\right)}}\)

\(=\frac{\sqrt{x-2}\left(\left(x-3\right)\sqrt{x-2}+3\sqrt{x-4}\right)}{\sqrt{x-4}\left(3\sqrt{x-4}+\left(x-3\right)\sqrt{x-2}\right)}\)

\(=\frac{\sqrt{x-2}}{\sqrt{x-4}}\)

alibaba nguyễn
10 tháng 8 2017 lúc 15:57

\(C=\frac{\sqrt{2\sqrt{4-x^2}}.\left(\sqrt{\left(2+x\right)^3}-\sqrt{\left(2-x\right)^3}\right)}{4+\sqrt{4-x^2}}\)

Đặt \(\hept{\begin{cases}\sqrt{2+x}=a\\\sqrt{2-x}=b\end{cases}\Rightarrow}a^2+b^2=4\)

\(\Rightarrow C=\frac{\sqrt{2ab}.\left(a^3-b^3\right)}{a^2+b^2+ab}=\frac{\sqrt{2ab}.\left(a-b\right)\left(a^2+b^2+ab\right)}{a^2+b^2+ab}\)

\(=\sqrt{2ab}.\left(a-b\right)=\sqrt{2\sqrt{4-x^2}}.\left(\sqrt{2+x}-\sqrt{2-x}\right)\)

Hoàng Quang Kỳ
Xem chi tiết
Hoàng Quang Kỳ
Xem chi tiết
Không Tên
18 tháng 12 2017 lúc 20:03

M = \(\left(\frac{x}{x-3}-\frac{x+3}{3x^2-6x-9}+\frac{1}{3x+3}\right)\)\(\frac{x^2-2x-3}{x^2+x+2}\)

\(\left(\frac{x\left(3x+3\right)}{3\left(x-3\right)\left(x+1\right)}-\frac{x+3}{3\left(x-3\right)\left(x+1\right)}+\frac{x-3}{3\left(x+1\right)\left(x-3\right)}\right)\)\(\frac{\left(x+1\right)\left(x-3\right)}{x^2+x+2}\)

=  \(\frac{3\left(x^2+x-2\right)}{3\left(x-3\right)\left(x+1\right)}\)*  \(\frac{\left(x+1\right)\left(x-3\right)}{x^2+x+2}\)  = \(\frac{x^2+x-2}{x^2+x+2}\)

Ta thấy   x2 + x - 2  <   x2 + x + 2

nên M < 1