Rut gon bieu thuc sau:T=(1/2+1).(1/3+1). (1/4+1)....(1/98+1).(1/99+1)
rut gon bieu thuc:(1/2+1)(1/3+1)(1/4+1).....(1/99+1)
Bài này có rắc rối đâu em?
Thực hiện phép tính trong ngoặc lại là ra dạng (n+1)/n.
1 dãy các số liên tục kéo dài nhân với nhau thì triệt tiêu là xong!
Chúc em học tốt!
rut gon bieu thuc
B=1/2+(1/2)^2+(1/2)^3+...+(1/2)^99
rut gon bieu thuc
3(2^2+1).(2^4+1)...(2^64+1)+1
\(3\left(2^2+1\right).\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{64}+1\right)+1\)
\(=\left(2^4-1\right)\left(2^4+1\right)....\left(2^{64}+1\right)+1\)
\(=\left(2^8-1\right).\left(2^8+1\right)\left(2^{16}+1\right)....\left(2^{64}+1\right)+1\)
\(=\left(2^{64}-1\right).\left(2^{64}+1\right)+1\)
\(=2^{64}-1+1=2^{64}\)
Vậy : \(3\left(2^2+1\right).\left(2^4+1\right)...\left(2^{64}+1\right)+1=2^{64}\)
Rut gon bieu thuc
3(2^2+1)(2^4+1)(2^8+1)(2^16+1)
=\(\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
=\(\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
=...=2^32-1
nhân hết ra là xong:))
bài về nhà hs phải tự làm
Cái bước (22-1)(22 + 1)(24 +1)(216+1) làm như thế nào mà ra vậy
Rut gon bieu thuc sau
3(2*2+1)(2*4+1)(2*8+1)(2*16+1)
rut gon bieu thuc tren (x-1)^3-(x-1).(x^2+x+1)
Lời giải:
$(x-1)^3-(x-1)(x^2+x+1)=(x-1)[(x-1)^2-(x^2+x+1)]=(x-1)(x^2-2x+1-x^2-x-1)=(x-1)(-3x)=-3x(x-1)$
rut gon bieu thuc
B=((3/√(1+a))+√(1-a)):((3/√(1+a^2))+1)
rut gon bieu thuc
1/(1^4+1^2+1)+2/(2^4+2^2+1)+3/(3^4+3^2+1)+...+2014/(2014^4+2014^2+2014)=...
{giup minh vs}
Rut gon bieu thuc
A= 1+1/2+1/2^+1/2^+....+1/2^2017
\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2017}}\)
\(\Rightarrow2A=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2016}}\)
\(\Rightarrow2A-A=\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\right)\)
\(-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2017}}\right)\)
\(\Rightarrow A=2-\dfrac{1}{2^{2017}}=\dfrac{2^{2018}-1}{2^{2017}}\)
\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2017}}\)
\(2A=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2016}}\right)\)
\(2A-A=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2016}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2017}}\right)\)
\(A=2-2^{2017}\)