Chứng tỏ S=1/16+1/17+1/18+1/29+1/20<1/3
B=1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20+1/21+1/22
Chứng tỏ B>1/2
\(B=\frac{1}{12}+\frac{1}{13}+...+\frac{1}{22}\)có 11 số hạng
Ta có: \(\frac{1}{12}>\frac{1}{22}\)
\(\frac{1}{13}>\frac{1}{22}\)
.............
\(\frac{1}{22}=\frac{1}{22}\)
\(\Rightarrow B>\left(\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}\right)=\frac{11}{22}=\frac{1}{2}\)
chứng tỏ 15/15*16 + 15/16*17+15/17.*18+15/18*19+15/19*20 nhỏ hơn 1/3
mấy bạn trả lời nhanh nha , mình cần gấp lắm , làm đi , mình tick cho
Gọi \(S=\frac{15}{15\cdot16}+\frac{15}{16\cdot17}+..+\frac{15}{19\cdot20}\)
\(\Leftrightarrow S=1-\frac{15}{16}+\frac{15}{16}-\frac{15}{17}+...+\frac{15}{19}-\frac{15}{20}\)
\(\Leftrightarrow S=1-\frac{15}{20}=\frac{1}{4}<\frac{1}{3}\)
Vậy S< \(\frac{1}{3}\)
--------------------Good luck------------------------
a) Chứng tỏ rằng :
1/12 +1/32+1/42+...+1/1002 <1
b)So sánh :
A=(1718-1)/(1719-1) và B=(1719-1)/(1720-1)
a) Không thể vì: \(\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}=1+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}>1\)
b) Ta có: \(\dfrac{a}{b}< 1\) thì \(\dfrac{a}{b}>\dfrac{a-m}{b-m}\)
CM: \(\dfrac{a}{b}=\dfrac{a\cdot\left(b-m\right)}{b\cdot\left(b-m\right)}=\dfrac{ab-am}{b^2-bm}\left(1\right)\\ \dfrac{a-m}{b-m}=\dfrac{\left(a-m\right)\cdot b}{\left(b-m\right)\cdot b}=\dfrac{ab-am}{b^2-bm}\left(2\right)\)
Vì \(\dfrac{a}{b}< 1\Rightarrow a< b\Rightarrow am< bm\Rightarrow ab-am>ab-bm\left(3\right)\)
Từ (1), (2), (3) ta có \(\dfrac{a}{b}>\dfrac{a-m}{b-m}\)
Vậy
\(B=\dfrac{17^{19}-1}{17^{20}-1}>\dfrac{17^{19}-1-16}{17^{20}-1-16}=\dfrac{17^{19}-17}{17^{20}-17}=\dfrac{17\cdot\left(17^{18}-1\right)}{17\cdot\left(17^{19}-1\right)}=\dfrac{17^{18}-1}{17^{19}-1}=A\)
Vậy B > A
S=1/5+1/13+1/25+...+1/19^2+20^2 chứng tỏ rằng S<17/40
Cho S= 1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16 + 1/17 + 1/18 + 1/19 + 1/20, so sánh S và 1/2
\(S=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\)
\(>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)(10 số hạng)
\(=10.\frac{1}{20}=\frac{1}{2}\).
Vậy \(S>\frac{1}{2}\).
Cho S = 1/11 +1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20. So sánh S với 1/2
Ta có:\(\frac{1}{11}>\frac{1}{20};\frac{1}{12}>\frac{1}{20};\frac{1}{13}>\frac{1}{20};....;\frac{1}{19}>\frac{1}{20}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)(Có 10 phân số \(\frac{1}{20}\))
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{10}{20}\)\(\Leftrightarrow S>\frac{10}{20}\)
Mà \(\frac{10}{20}=\frac{1}{2}\)nên
\(\Rightarrow S>\frac{1}{2}\)
Cho S = 1/11+1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20. Hãy so sánh S và 1/2
ta thấy: 1/11;1/12;1/13;...;1/19;1/20 đều >1/20
=>1/11+1/12+...1/19+1/20>1/20+1/20...+1/20
1/11+1/12+...1/19+1/20>10/20
1/11+1/12+...1/19+1/20>1/2 vậy S>1/2
Cho S=1/11+1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20
So sánh S và 1
Ta thấy mỗi số hạng của tổng đều bé hơn 1/10
=>S<\(\frac{1}{10}.10=1\)
=>S<1
S = 1/11 + 1/12 + 1/13 + 1/14 + 1/15 + 1/16 + 1/17 + 1/18 + 1/19 + 1/20
S < 1/10 + 1/10 + 1/10 + 1/10 + 1/10 + 1/10 + 1/10 + 1/10 + 1/10 + 1/10
S < 10 × 1/10
S < 1
S = 1/11+1/12+1/13+1/14+1/15+1/16+1/17+1/18+1/19+1/20
tìm S và so sánh S với 1/2
\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+...+\frac{1}{20}\)(10 số \(\frac{1}{20}\))
=\(\frac{1}{20}.10=\frac{1}{2}\)
vậy S>1/2