Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Anh Thư 6a1
Xem chi tiết
tran thi phuong thao
Xem chi tiết
Quyết Tâm Chiến Thắng
Xem chi tiết
zZz Cool Kid_new zZz
30 tháng 8 2019 lúc 19:25

Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)\rightarrow\left(x,y,z\right)\)

Khi đó:\(\left(\frac{c}{a-b},\frac{a}{b-c},\frac{b}{c-a}\right)\rightarrow\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\)

Ta có:

\(P\cdot Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)

Mặt khác:\(\frac{y+z}{x}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\cdot\frac{c}{a-b}=\frac{b^2-bc+ac-a^2}{ab}\cdot\frac{c}{a-b}\)

\(=\frac{c\left(a-b\right)\left(c-a-b\right)}{ab\left(a-b\right)}=\frac{c\left(c-a-b\right)}{ab}=\frac{2c^2}{ab}\left(1\right)\)

Tương tự:\(\frac{x+z}{y}=\frac{2a^2}{bc}\left(2\right)\)

\(=\frac{x+y}{z}=\frac{2b^2}{ac}\left(3\right)\)

Từ ( 1 );( 2 );( 3 ) ta có:
\(P\cdot Q=3+\frac{2c^2}{ab}+\frac{2a^2}{bc}+\frac{2b^2}{ac}=3+\frac{2}{abc}\left(a^3+b^3+c^3\right)\)

Ta có:\(a+b+c=0\)

\(\Rightarrow\left(a+b\right)^3=-c^3\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Khi đó:\(P\cdot Q=3+\frac{2}{abc}\cdot3abc=9\)

Quyết Tâm Chiến Thắng
30 tháng 8 2019 lúc 19:41

Mách mk nốt 2 bài kia vs

Nguyễn Mạnh Kiên
31 tháng 8 2019 lúc 14:18

chiju

TÔ TÚ QUYÊN
Xem chi tiết
Đoàn Cẩm Ly
2 tháng 2 2017 lúc 17:27

1.

Ta có x+y+z=0

=>x+y=-z; x+z=-y; y+z=-x.

\(\left(\frac{x}{y}+1\right)\left(\frac{y}{z}+1\right)\left(\frac{z}{x}+1\right)\)\(=\frac{x+y}{y}\cdot\frac{y+z}{z}\cdot\frac{z+x}{x}\)\(=-\frac{xyz}{xyz}=-1\)

soyeon_Tiểu bàng giải
2 tháng 2 2017 lúc 20:07

2) a+b+c=0 <=> (a+b+c)^2=0

<=> a^2+b^2+c^2+2(ab+bc+ca)=0

VT >= ab+bc+ca+2(ab+bc+ca)

=> 0 >= 3(ab+bc+ca)

<=> 0 >= (ab+bc+ca) 

Dấu "=" xảy ra khi a=b=c=0

Anonymous
Xem chi tiết
Kurosaki Akatsu
16 tháng 8 2017 lúc 15:27

Ờm thì đại khái như vầy , dùng thêm hằng cao cấp mới chơi được =))

Link : Bảy hằng đẳng thức đáng nhớ – Wikipedia tiếng Việt 

Dùng hằng mở rộng số 4

Ta có :

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Leftrightarrow ayz+bxz+cxy=0\) (1)

Lại có :

\(\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)^2=\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1^2=1\) (chỗ này dùng cái skill mở rộng) 

<=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\left(\frac{xyc}{abc}+\frac{ayz}{abc}+\frac{bzx}{abc}\right)=1\)

<=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+2.\frac{ayz+bxz+cxy}{abc}=1\)

Thay 1 vào 

=> \(\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}=1\)

Anonymous
16 tháng 8 2017 lúc 15:29

mình giải hơi khác 1 chút, nhưng thôi cx đc

Kurosaki Akatsu
16 tháng 8 2017 lúc 15:31

Sửa lại :

Lại có :

\(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xyc}{abc}+\frac{yza}{abc}+\frac{zxb}{cba}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2.\frac{ayz+bxz+cxy}{abc}=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)

Thùy Linh Đào
Xem chi tiết
huylong
Xem chi tiết
☆☆《Thiên Phi 》☆☆
1 tháng 6 2019 lúc 19:46

bn tham khảo câu hỏi tương tự nha!

hok tốt!

Lê Thanh Trúc
Xem chi tiết
Phạm Gia Khánh
22 tháng 11 2018 lúc 21:11

bn có lời giải chưa

KAl(SO4)2·12H2O
Xem chi tiết
lê văn hải
6 tháng 11 2017 lúc 15:19

Bài 5 nha:

   \(a+\frac{1}{b}=b+\frac{1}{c}\Leftrightarrow a-b=\frac{1}{c}-\frac{1}{b}.\)

\(\Leftrightarrow\left(a-b\right)=\frac{b-c}{bc}_{\left(1\right)}\)

\(a+\frac{1}{b}=c+\frac{1}{a}\Leftrightarrow a-c=\frac{1}{a}-\frac{1}{b}\)

\(\Leftrightarrow\left(a-c\right)=\frac{b-a}{ab}_{\left(2\right)}\)

\(c+\frac{1}{a}=b+\frac{1}{c}\Leftrightarrow c-b=\frac{1}{c}-\frac{1}{a}\)

\(\Leftrightarrow\left(c-b\right)=\frac{a-c}{ac}_{\left(3\right)}\)

Nhân từng vế của (1) ; (2) và (3) , ta được :

        \(\left(a-b\right)\left(a-c\right)\left(c-b\right)=\frac{\left(b-c\right)\left(b-a\right)\left(a-c\right)}{\left(abc\right)^2}\)

                                                              \(=\frac{\left(c-b\right)\left(a-b\right)\left(a-c\right)}{\left(abc\right)^2}\)

\(\Leftrightarrow\left(abc\right)^2=1\Leftrightarrow abc=1\)hoặc \(abc=\left(-1\right)\)

lê văn hải
6 tháng 11 2017 lúc 15:09

Bài 3:

  Ta có : \(x^2+y^2+z^2=1\Leftrightarrow\left(x+y+z\right)^2\)

                                        \(=1+2\left(xy+yz+zx\right)\Leftrightarrow1=1+2\left(xy+yz+zx\right)\)

             \(\Leftrightarrow xy+yz+zx=0\)(*)

             áp dụng kết quả sau :

  Ta có : \(a^3+b^3+c^3-3abc=\frac{1}{2}\left(a+b+c\right)\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

  Thấy vậy : \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b+c\left(ab+bc+ca\right)\right)-3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=\left(a+b+c\right)^33\left(a+b+c\right)\left(ab+bc+ca\right)\)

                                                   \(=\left(a+b+c\right)\left(a+b+c\right)^2-3\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=\frac{1}{2}\left(a+b+c\right)\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

         áp dụng vào bài toán, ta có :

\(x^3+y^3+z^3-3xyz=\frac{1}{2}\left(x+y+z\right)\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\)

\(=\frac{1}{2}\left(x+y+z\right)\left(2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)\right)\)

\(\Leftrightarrow1-3xyz=\frac{1}{2}\times1\times2=1\Leftrightarrow xyz=0\)(**)

Mà \(x+y+z=1\)(***)

\(\Leftrightarrow\)x ; y ; z là 3  nghiệm của pt bậc 3 sau : \(U^3-U^2=0\)

\(\Leftrightarrow U=0\)hoặc \(U=1\)

=> 1 trong 3 phần tử x ; y ; z =1 ; 2 phần tử còn lại sẽ = 0

Do đó \(x+y^2+z^3=1\)

   => điều phải chứng minh.