Chứng minh rằng
a,\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}
Chứng minh rằng \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
Ta có 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64
= ( 1/2 - 1/4 ) + ( 1/8 - 1/16 ) + ( 1/32 - 1/64)
= 1/4 + 1/16 + 1/64
= 16 + 4 + 1 /64
= 21/64 < 21/63 = 1/3
Vậy 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3 ( đpcm ) Chúc bn hok tốt . k mik nha
Chứng minh rằng:
\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
Ta có :
\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
\(\frac{1}{4}+\frac{1}{16}+\frac{1}{64}< \frac{1}{3}\)
\(\frac{16}{64}+\frac{4}{64}+\frac{1}{64}< \frac{1}{3}\)
\(\frac{16+4+1}{64}< \frac{1}{3}\)
\(\frac{21}{64}< \frac{1}{3}\)
=> 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3
Chứng minh\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}<\frac{1}{3}\)
Đặt vế trái là A ta có
\(2A=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)
\(3A=2A+A=1-\frac{1}{64}<1\Rightarrow A<\frac{1}{3}\)
Chứng minh \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}<\frac{1}{3}\)
Đặt A= 1/2-1/4+1/8-1/16+1/32-1/64
ta có 2A=1-1/2+1/4-1/8+1/16-1/32
2A-A=A=1-1/64=63/64
vì 63/64<1/3
=>A<1/3 (đpcm)
Ta thấy:
1/2-1/4+1/8-1/16+1/32-1/64 =
(1/2+1/4+1/8+1/16+1/32+1/64) – 2 x (1/4 + 1/16 + 1/64) =
(1 – 1/64) – 42/64 =
63/64 – 42/64 = 21/64 < 21/63=1/3
=> 1/2-1/4+1/8-1/16+1/32-1/64 < 1/3
=\(\frac{1}{2}+\frac{1}{8}+\frac{1}{32}=\frac{21}{32}>\frac{1}{3}\Rightarrow\)de bai sai
CHỨNG MINH RẰNG :
\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
Ta có: \(\frac{1}{2}-\frac{1}{4}=\frac{2}{4}-\frac{1}{4}=\frac{2-1}{4}=\frac{1}{4}\)
\(\frac{1}{8}-\frac{1}{16}=\frac{2}{16}-\frac{1}{16}=\frac{2-1}{16}=\frac{1}{16}\)
\(\frac{1}{32}-\frac{1}{64}=\frac{2}{64}-\frac{1}{64}=\frac{2-1}{64}=\frac{1}{64}\)
=> \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
=\(\frac{1}{4}+\frac{1}{16}+\frac{1}{64}\)
=\(\frac{16}{64}+\frac{4}{64}+\frac{1}{64}=\frac{21}{64}\)
Ta có: \(\frac{21}{64}< \frac{21}{63}=\frac{1}{3}\)
=> \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
Đặt \(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
\(2A=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)
\(A+2A=1-\frac{1}{64}\)
\(3A=1-\frac{1}{64}< 1\)
=>A<1/3
=>đpcm
1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 = 21/64
Nên 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3
Chúc bạn học giỏi
Chứng minh:
\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}<\frac{1}{3}\)
Chứng minh rằng \(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}<\frac{1}{3}\)
Chứng minh rằng:
\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}<\frac{1}{3}\)
Giúp mình với!!!
Chứng minh rằng :
\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)\(\frac{1}{3}\)
Chứng minh rằng : \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}<\frac{1}{3}\)
\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-...-\frac{1}{64}=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-..-\frac{1}{2^6}\) = A
2A = 1 - 1/2 + 1/2^2 - ... - 1/2^5
2A + A = 1 - 1/2 + 1/2^2 - ... - 1/2^5 + 1/2 - 1/2^2 + 1/2^3 - 1/2^4 - .. - 1/2^6
3A = \(1-\frac{1}{2^6}=\frac{2^6-1}{2^6}\)
Đặt A = 1/2 − 1/4 + 1/8 − 1/16 + 1/32 − 1/64 A = 1/2 − 1/4 + 1/8 − 1/16 + 1/32 − 1/64
2A = 1 − 1/2 + 1/4 − 1/8 + 1/16 − 1/322 A =1 − 1/2 + 1/4 − 1/8 + 1/16 − 1/32
3A = 2A + A = 1 − 1/64 < 1 ⇒ A < 1/3 .