cho f(x)=ax^2+bx+c. Biết f(0), f(1), f(2) có giá trị là số nguyên. chứng minh rằng f(5), f(6), f(7) cũng có giá trị nguyên
giải giúp mình đi
cho f(x)=a mũ 2 + bx + c
Biết f(0), f(1), f(2) có giá trị là số nguyên. Chứng minh rằng f(5), f(6), f(7) cũng có giá trị nguyên
+)\(f\left(0\right)=c\), \(f\left(0\right)\)nguyên nên suy ra c nguyên
+) \(f\left(1\right)=a+b+c\); \(f\left(1\right),c\)nguyên nên suy ra a+b nguyên
+) \(f\left(2\right)=4a+2b+c\); \(f\left(2\right),c,a+b\)nguyên nên suy ra 2a nguyên => 2b nguyên
Ta có: \(f\left(5\right)=25a+5b+c=10.2.a+5\left(a+b\right)+c\)
Vì 2a, a+b, c nguyên
=> \(f\left(5\right)\)nguyên
\(f\left(6\right)=36a+6b+c=15.2.a+6\left(a+b\right)+c\)nguyên
\(f\left(7\right)=49a+7b+c=21.2a+7\left(a+b\right)+c\)nguyên
Câu hỏi của nguyễn phạm khánh linh - Toán lớp 7 - Học toán với OnlineMath'
Em tham khảo nhá
Cho đa thức \(f\left(x\right)=ax^2+bx+c\) , với a, b, c là các số thực. Biết rằng f(0), f(1), f(2) có giá trị nguyên. Chứng minh rằng tổng f(3)+f(4)+f(5) cũng có giá trị nguyên
cho đa thức f(x) = ax2 + bx +c với a,b,c là các số thực .Biết rằng f(0) ; f(1) ; f(2) có giá trị nguyên . Chứng minh rằng 2a, 2b có giá trị nguyên
\(f\left(0\right)=a.0^2+b.0+c=c\) có giá trị nguyên
\(f\left(1\right)=a+b+c\) có giá trị nguyên => a + b có giá trị nguyên
\(f\left(2\right)=4a+2b+c=2a+2\left(a+b\right)+c\)=> 2a có giá trị nguyên
=> 4a có giá trị nguyên
=> 2b có giá trị nguyên.
Cho đa thức f(x) = \(ax^2+bx+c\) với a ,b, c là các số thực. Biết rằng f(0) ; f(1) ; f(2) có giá trị nguyên . Chứng minh rằng 2a , 2b có giá trị nguyên
) f(0) = c; f(0) nguyên => c nguyên (*)
f(1) = a+ b + c ; f(1) nguyên => a+ b + c nguyên (**)
f(2) = 4a + 2b + c ; f(2) nguyên => 4a + 2b + c nguyên (***)
Từ (*)(**)(***) => a + b và 4a + 2b nguyên
4a + 2b = 2a + 2.(a + b) có giá trị nguyên mà 2(a+ b) nguyên do a+ b nguyên
nên 2a nguyên => 4a có giá trị nguyên mà 4a + 2b nguyên do đó 2b có giá trị nguyên
:3
Có \(f\left(0\right);f\left(1\right);f\left(2\right)\)\(\in Z\Rightarrow\hept{\begin{cases}f\left(0\right)=c\in Z\\f\left(1\right)=a+b+c\in z\\f\left(2\right)=4a+2b+c\in z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b\in z\\4a+2b\in z\end{cases}\Rightarrow\hept{\begin{cases}2a+2b\in z\\4a+2b\in z\end{cases}}\Rightarrow2a\in z;}2b\in z\)
\(\RightarrowĐPCM\)
Thay x= 0 =>f(0)= 0+0+c=c luôn thuộc Z ( vì f(0) thuộc Z)
Thay x=1 => f(1)= a+b+c => a+b thuộc Z => 2a+2b thuộc Z (1)
Thay x=2 => f(2) = 4a+2b+c => 4a+2b thuộc Z (2)
từ (1), (2) => 4a+2b - (2a+2b) =2a thuộc Z
mặt khác f(1) +f(2)=6a+4b thuộc Z => 6a+4b -(4a+2b) thuộc Z
=> 2b+2a thuộc Z =>2b thuộc Z
cho đa thức f(x)=ax^2+bx+c với a,b,c là các số thực. biết f(0),f(1),f(2) có giá trị nguyên. chứng minh 2a,2b có giá trị nguyên
Ta có:
\(f\left(0\right)=c\in Z\)(1)
\(f\left(1\right)=a+b+c\in Z\)(2)
\(f\left(2\right)=4a+2b+c\in Z\)(3)_
Từ (1), (2) => \(a+b\in Z\)=> \(2a+2b\in Z\)(4)
Từ (1), (3)=> 4a+2b\(\in Z\)(5)
Từ (4), (5) => \(\left(4a+2b\right)-\left(2a+2b\right)\in Z\)
=> \(2a\in Z\)=> \(2b\in Z\)
Cho đa thức f(x)=ax2+bx+c ( a;b;c là số thực ). Biết f(0), f(1), f(2) có giá trị nguyên. CMR:
a. 2a và 2b có giá trị nguyên
b. f(3), f(4), f(5) cũng có giá trị nguyên.
a) f(0) = c; f(0) nguyên => c nguyên (*)
f(1) = a+ b + c ; f(1) nguyên => a+ b + c nguyên (**)
f(2) = 4a + 2b + c ; f(2) nguyên => 4a + 2b + c nguyên (***)
Từ (*)(**)(***) => a + b và 4a + 2b nguyên
4a + 2b = 2a + 2.(a + b) có giá trị nguyên mà 2(a+ b) nguyên do a+ b nguyên
nên 2a nguyên => 4a có giá trị nguyên mà 4a + 2b nguyên do đó 2b có giá trị nguyên
b) f(3) = 9a + 3b + c = (a+ b + c) + (4a + 2b) + 4a
Vì a+ b + c ; 4a + 2b; 4a đều có giá trị nguyên nên f(3) có giá trị nguyên
f(4) = 16a + 4b + c = (a+ b) + (9a + 3b + c) + 3. 2a
Vì a+ b; 9a + 3b + c; 2a đều nguyên nên f(4) có giá trị nguyên
f(5) = 25a + 5b + c = (16a + 4b + c) + (a+ b) + 4. 2a
Vì 16a + 4b + c ; a+ b; 2a đều có giá trị nguyên nên f(5) có giá trị nguyên
Cho f(x)=ax\(^2\)+bx+c. Biết f(0),f(1),f(2)là số nguyên. Chứng minh rằng: f(x) luôn nhận giá trị nguyên với mọi x.
Ta có f(0)=a.02+b.0+c=c
=> c là số nguyên
f(1)=a.12+b.1+c=a+b+c=(a+b)+c
Vì c là số nguyên nên a+b là số nguyên (1)
f(2)=a.22+b.2+c=2(2a+b)+c
=>2.(2a+b) là số nguyên
=> 2a+b là số nguyên (2)
Từ (1) và (2) =>(2a+b)-(a+b) là số nguyên =>a là số nguyên => b cũng là số nguyên
Vậy f(x) luôn nhân giá trị nguyên với mọi x
Ta có f(0)=a.0\(^2\)+b.0+c=c=>c là số nguyên
f(1)=a.1\(^{^2}\)+b.1+c=a+b+c
Vì c là số nguyên=>a+b là số nguyên(1)
f(2)=a.2\(^2\)+b.2+c=2.(2a+b)+c=>2.(2a+b)là số nguyên=>2a+b là số nguyên(2)
Từ (1)và(2)=>(2a+b)-(a+b)=2a+b-a-b=a là số nguyên=>a là số nguyên
Do a+b là số nguyên, mà a là số nguyên
=>b là số nguyên
Vậy f(x) luôn nhận giá trị nguyên với mọi x
bn Nguyễn Minh Tuấn ơi
tại sao 2(2a+b) nguyên thì 2a+b nguyên vậy
a
cho f(x) = \(ax^2+bx+c\) ( a ; b ; c ∈Q )
Biết f(0) ; f(1) ; f(2) có giá trị nguyên.
chứng minh rằng 2a , 2b có giá trị nguyên
Lời giải:
$f(0)=a.0^2+b.0+c=c$ nguyên
$f(1)=a+b+c$ nguyên, mà $c$ nguyên nên $a+b+c-c=a+b$ nguyên
$f(2)=4a+2b+c=2a+2(a+b)+c$ nguyên mà $a+b, c$ nguyên nên $2a$ nguyên
$2a$ nguyên, $2(a+b)$ nguyên nên $2b$ nguyên.
Ta có đpcm.
Cho f(x) = ax^2 + bx + c, biết f(0), f(1), f(2) đều là các số nguyên. Chứng minh rằng: f(x) luôn nhận giá trị nguyên với mọi x thuộc Z
Ta có f(0)=a.0
2
+b.0+c=c=>c là số nguyên
f(1)=a.1
2
+b.1+c=a+b+c
Vì c là số nguyên=>a+b là số nguyên(1)
f(2)=a.2
2
+b.2+c=2.(2a+b)+c=>2.(2a+b)là số nguyên=>2a+b là số nguyên(2)
Từ (1)và(2)=>(2a+b)-(a+b)=2a+b-a-b=a là số nguyên=>a là số nguyên
Do a+b là số nguyên, mà a là số nguyên
=>b là số nguyên
Vậy f(x) luôn nhận giá trị nguyên với mọi x