cho đa thức P(x)thỏa mãn : x.P(x+2) = (x2-9).P(x).CMR:Đa thức P(x)có ít nhất 3 nghiệm
cho đa thức f(x) thỏa mãn điều kiện: x.f(x+1)=(x+2).f(x)
cmr:đa thức f(x) có ít nhất 2 nghiệm
Với x=0, ta có x.f(x+1)=(x+2).f(0)=0
=>(0+2).f(0)=0
2.f(0)=0
=>f(0)=0
Với x=-2, ta có
-2.f(-2+1)=(-2+2).f(-2)
=>-2.f(-1)=0.f(-2)
=>-2.f(-1)=0
=>f(-1)=0
Vậy đa thức f(x) có ít nhất 2 nghiệm
Em mới học lớp 5 thôi ạ cho nên em chịu vậy nên em chỉ biết chúc chị học giỏi thôi
em mới lên lớp 5 năm nay lên lớp 6 nên em cũng chẳn biết mấy cái này em chẳng biết nói gì chỉ biết chúc chị xinh đẹp học giỏi thôi ạ
cho đa thức P(x) thỏa mãn x.P(x+2) = (x2 - 9) . P(x)
Chứng minh P(x) có ít nhất 3 nghiệm
Bài làm:
Ta có:
+ Với x=0
=> 0.P(2)=(0-9).P(0)
<=> 0=(-9).P(0)
=> P(0)=0
=> x=0 là 1 nghiệm của P(x) (1)
+ Với x=3
=> 3.P(5)=(9-9).P(3)
<=>3.P(5)=0
=>P(5)=0
=> x=5 là 1 nghiệm của P(x) (2)
+ Với x=-3
=> (-3).P(-3+2)=(9-9).P(-3)
<=> (-3).P(-1)=0
=> P(-1)=0
=> x=-1 là 1 nghiệm của P(x) (3)
Từ(1),(2) và (3)
=> P(x) có ít nhất 3 nghiệm
=> đpcm
Học tốt!!!!
cho đa thức P(x) thỏa mãn x.P(x+1) = (x^2 - 4) . P(x) Chứng minh P(x) có ít nhất 3 nghiệm
Thay \(x=0\) vào ta có :
\(0.P\left(1+1\right)=\left(1^2-4\right).P\left(0\right)\Leftrightarrow0=-3.P\left(0\right)\Leftrightarrow P\left(0\right)=0\)
Thay \(x=\pm2\) vào ta có : ... ( Chứng minh tương tự )
=> Vậy P ( x ) có ít nhất 3 nghiệm là x = 0; x = 2 và x = -2
+ Với \(x=0\Rightarrow0.P\left(0+1\right)=\left(0-4\right).P\left(0\right)\)
\(\Leftrightarrow-4.P\left(0\right)=0\)
\(\Rightarrow P\left(0\right)=0\)
Vậy \(x=0\)là nghiệm của đa thức .
+ Với \(x=2\Rightarrow2.P\left(2+1\right)=\left(4-4\right).P\left(2\right)\)
\(\Leftrightarrow2P\left(3\right)=0\)
\(\Leftrightarrow P\left(3\right)=0\)
Vậy \(x=3\)là nghiệm của đa thức .
+ Với \(x=-2\Rightarrow\left(-2\right).P\left(-2+1\right)=\left(4-4\right).P\left(-2\right)\)
\(\Leftrightarrow\left(-2\right).P\left(-1\right)=0\)
\(\Leftrightarrow P\left(-1\right)=0\)
Vậy \(x=-1\)là nghiệm của đa thức .
\(\Rightarrow\)\(P\left(x\right)\) có ít nhất 3 nghiệm .
Vũ Cao Minh : Bạn làm sai rồi ..
Linn : Cảm ơn vì đã trả lời nhé , Lin làm đúng rồi .( nếu không là mik lại phải ngồi nát óc nghĩ )
Cho đa thức P(x) thõa mãn:(x+1).P(x-1)+x.P(x-3)=0
Chứng minh P(x) có ít nhất 2 nghiệm.
\(\left(x+1\right).P\left(x-1\right)+x.P\left(x-3\right)=0\)
Thay x = 0 vào đẳng thức trên ta được :
\(\left(0+1\right).P\left(0-1\right)+0.P\left(0-3\right)=0\)
\(\Leftrightarrow1.P\left(-1\right)=0\)
\(\Rightarrow P\left(-1\right)=0\) => x = - 1 là nghiệm của P(x) (1)
Thay x = - 1 vào đẳng thức trên ta được :
\(\left(-1+1\right).P\left(-1-1\right)+\left(-1\right)P\left(-1-3\right)=0\)
\(\Rightarrow-P\left(-4\right)=0\)
\(\Rightarrow P\left(-4\right)=0\) => x = - 4 là nghiệm của P(x) (2)
Từ (1) ; (2) => P(x) có ít nhất 2 nghiệm (đpcm)
Với x = 0 Ta có :
0.P ( 0 + 2 ) - ( 0 - 3 ) .P ( 0 - 1 ) = 0 \(\Leftrightarrow\)0 + 3P( -1 ) = 0 \(\Leftrightarrow\)P ( -1 ) = 0
\(\Rightarrow\)x = -1 là một nghiệm của đa thức P ( x )
Với x=3 Ta có
3.P ( 3 + 2 ) - ( 3 - 3 ) .P ( 3 - 1 ) = 0\(\Leftrightarrow\)0 + 3P( 5 ) = 0 - 0.P(2) = 0 \(\Leftrightarrow\)3.P( 5 ) = 0\(\Leftrightarrow\)P( 5 ) = 0
\(\Rightarrow\)x=5 là một nghiệm của đa thức P ( x )
Vậy đa thức P ( x ) có ít nhất hai nghiệm là -1 va 0
Cho đa thức P(x) thoả mãn điều kiện x.P(x+1)=(x+2).P(x)
Chứng minh rằng đa thức P(x) có ít nhất hai nghiệm
https://olm.vn/hoi-dap/detail/102494074854.html
tham khảo
b> CMR : Đa thức (x^2 - 4) * f(x) = (x - 1) * f(x+1) có ít nhất 3 nghiệm
c> Cho đa thức f(x) thỏa mãn f(x+2)=(x^2 - 9) * f(x) với mọi x. CMR : Đa thức x * f(x) = 0 có ít nhất 3 nghiệm
b) xét x=2 ta có:(2^2-4). f(2)=(2-1).f(2+1)
0=1.f(3). suy ra f(3)=0. vậy 3 là nghiệm
xét x=1 và x=2
c) Tương tự
b> CMR : Đa thức (x^2 - 4) * f(x) = (x - 1) * f(x+1) có ít nhất 3 nghiệm
c> Cho đa thức f(x) thỏa mãn f(x+2)=(x^2 - 9) * f(x) với mọi x. CMR : Đa thức x * f(x) = 0 có ít nhất 3 nghiệm
b> CMR : Đa thức (x^2 - 4) * f(x) = (x - 1) * f(x+1) có ít nhất 3 nghiệm
c> Cho đa thức f(x) thỏa mãn f(x+2)=(x^2 - 9) * f(x) với mọi x. CMR : Đa thức x * f(x) = 0 có ít nhất 3 nghiệm
cho đa thức f(x) xác định với mọi x thỏa mãn
x.f(x+2) =( x2
-9).f(x)
1) tính f(5)
2) chứngminh rằng f(x) có ít nhất 3 nghiệm
\(a,f\left(5\right)\Rightarrow x=3\\ 3f\left(5\right)=0f\left(3\right)\Rightarrow f\left(5\right)=0\\ b,x=0\Rightarrow0f\left(2\right)=-9f\left(0\right)\Rightarrow f\left(0\right)=0\)
=> x = 0 là nghiệm
\(x=-3\Rightarrow-3f\left(-1\right)=\left(9-9\right)f\left(-3\right)=0f\left(-3\right)\\ \Rightarrow f\left(-1\right)=0\)
=> x = -1 là nghiệm
Theo ý a) ta có \(x=5\)
\(\Rightarrow f\left(x\right)\) có 3 nghiệm \(=\left\{0;-1;5\right\}\)