CTR : 3/4 + 8/9 + 15/16 + 24/25 +....+ 2499/2500 > 48
* Giúp mình với :(
3^4*8^9*15^16*24^25*...2499^2500
Rút gon: A= 8/9*15/16*24/25*...*2499/2500
giúp mk với nhé!
\(=\frac{2.4}{3^2}.\frac{3.5}{4^2}....\frac{49.51}{50^2}\)
\(=\frac{2.3....49}{3.4....50}.\frac{4.5....51}{3.4....50}\)
\(=\frac{2}{50}.\frac{17}{1}\)
\(=\frac{17}{25}\)
Ta có : \(A=\frac{8}{9}.\frac{15}{16}.....\frac{2499}{2500}\)
\(A=\frac{8.15.....2499}{9.16.....2500}\)
\(A=\frac{\left(2.4\right).\left(3.5\right).....\left(49.51\right)}{\left(3.3\right).\left(4.4\right).....\left(50.50\right)}\)
\(A=\frac{\left(2.3....49\right).\left(4.5....51\right)}{\left(3.4....50\right).\left(3.4.....50\right)}\)
\(A=\frac{2\left(3.4.....49\right).\left(4.5.....50\right).51}{\left(3.4.....49\right).50.3.\left(4.5.....50\right)}\)
\(A=\frac{2.51}{3.50}\)
\(A=\frac{2.17.3}{3.25.2}\)
\(A=\frac{17}{25}\)
cho S = 3/4+8/9+15/16+24/25+....+2499/2500.Chứng tỏ rằng:
a) S >48 b) S < 49
So thú bi cháy con gì ra đau tiên:
S=3/4 + 8/9 + 15/16+ 24/25 +. .......+2499/2500 CMR: S ko phải là só tự nhien
Do S = \(\frac{3}{4}+\frac{8}{9}+...+\frac{2499}{2500}\)
\(\Rightarrow\)S = \(\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+...+\left(1-\frac{1}{50^2}\right)\)
\(\Rightarrow\)S=(1+1+1+...+1) - \(\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
\(\Rightarrow\)S=49-\(\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)
Dễ thấy:\(\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)không phải là số tự nhiên
\(\Rightarrow\)S\(\notin N\)
cho B=3/4+8/9+15/16+24/25+...+2499/2500. Chứng tỏ B không phải là số nguyên.
Tính: 8/9 . 15/16 . 24/25 . ..... . 2499/2500
cho B = 3/4 + 8/9 + 15/16 + 24/25 + ...+ 2499/2500. Chứng tỏ B không phải là số nguyên
B \(=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{50^2-1}{50^2}\)
\(=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)\)
mà \(0
Cmr 3/4 + 8/9 + 15/16 + ... + 2499/2500 > 48
CMR M=3/4+8/9+15/16+..+2499/2500>48