cho A= 1/2^2 + 1/3^2 + ... + 1/2017^2. Chứng minh A<3/4
CHo A=1/2^2 +1/3^2+...1/2018^2 . Chứng minh 2017/4038 >A>2017/2018
Chữa đề \(\frac{2017}{4038}< A< \frac{2017}{2018}\)
Ta có: \(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)
\(\Leftrightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(\Leftrightarrow A< 1-\frac{1}{2018}=\frac{2017}{2018}\)(1)
Lại có: \(A>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}\)
\(\Leftrightarrow A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2018}-\frac{1}{2019}\)
\(\Leftrightarrow A>\frac{1}{2}-\frac{1}{2019}=\frac{2017}{4038}\)(2)
Từ (1) và (2) => đpcm
Cho A=1+2+2^2+2^3+...+2^2017. Chứng minh rằng A=2^2018 -1.
\(A=1+2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2018}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2018}\right)-\left(1+2+2^2+...+2^{2017}\right)\)
\(\Rightarrow A=2^{2018}-1\left(đpcm\right)\)
\(A=1+2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2018}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2018}\right)\)\(-\left(1+2+2^2+...+2^{2017}\right)\)
\(\Rightarrow A=2^{2018}-1\)
A=1+2+2^2+2^3+...+2^2017
2A=2+2^2+2^3+2^4+...2^2018
=> A= 2A - A = 2+2^2+2^3+2^4+...+2^2018-1+2+2^2+2^3+...+2^2017
=>A=2^2018-1
hok tốt!
Cho A = 1/2^2 + 1/ 3^2 + 1/4^2 + ... + 1/2016^2 + 1/2017^2 . Chứng minh A - 1 < 0
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}+\frac{1}{2017^2}\)
\(A=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2016.2016}+\frac{1}{2017.2017}\)
Ta thấy \(\frac{1}{2.2}< \frac{1}{1.2};\frac{1}{3.3}< \frac{1}{2.3};\frac{1}{4.4}< \frac{1}{3.4};...;\frac{1}{2016.2016}< \frac{1}{2016.2017};\frac{1}{2017.2017}< \frac{1}{2017.2018}\)
Suy ra \(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}+\frac{1}{2017.2018}\)
Nên \(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-...+\frac{1}{2017}-\frac{1}{2018}\)
Khi đó \(A< 1-\frac{1}{2018}< 1\)nên A < 1
Suy ra A - 1 < 0
Vậy A - 1 < 0
Cho A=1/2^2 + 1/3^2 + 1/4^2 +....+ 1/2017^2 Chứng minh A không phải là số nguyên
cho A =2018/2017^2+1 + 2018/2017^2+2 +...+2018/2017^2+201
chứng minh rằng 1<A<2
làm hộ mình
BT1: Cho A = \(\dfrac{1}{2017}+\dfrac{2}{2017^2}+\dfrac{3}{2017^3}+...+\dfrac{2017}{2017^{2017}}+\dfrac{2018}{2017^{2018}}\)
Chứng minh rằng : A < \(\dfrac{2017}{2016^2}\)
Cho \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2017^2}\)
\(B=\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{2017!}\)
Chứng minh \(A+B< 2\)
A=1/2^2 + 1/3^2 + 1/4^2 + ... + 1/2017^2
A < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/2016.2017
A < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/2016 - 1/2017
A < 1 - 1/2017 < 1 (1)
B = 2!/3! + 2!/4! + 2!/5! + ... + 2!/2017!
B = 2!.(1/3! + 1/4! + 1/5! + ... + 1/2017!)
B < 2.(1/2.3 + 1/3.4 + 1/4.5 + ... + 1/2016.2017)
B < 2.(1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/2016 - 1/2017)
B < 2.(1/2 - 1/2017) < 2.1/2 = 1 (2)
Từ (1) và (2) => A + B < 2 (đpcm)
Cho A=1+1/22+1/32+1/42+.............+1/20172
Chứng minh rằng A không là số tự nhiên