A =\(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+.......+\frac{1}{460}\)
TÍNH:
a, \(\frac{1}{10}-\frac{1}{40}-\frac{1}{88}-\frac{1}{154}-\frac{1}{238}-\frac{1}{340}\)
a) \(\frac{1}{10}-\frac{1}{40}-\frac{1}{88}-\frac{1}{154}-\frac{1}{238}-\frac{1}{340}\)
\(=\frac{1}{10}-\left(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\right)\)
\(=\frac{1}{10}-\frac{1}{3}.\left(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\right)\)
\(=\frac{1}{10}-\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\right)\)
\(=\frac{1}{10}-\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{20}\right)\)
\(=\frac{1}{10}-\frac{1}{3}.\frac{3}{20}\)
\(=\frac{1}{10}-\frac{1}{20}=\frac{2}{20}-\frac{1}{20}=\frac{1}{20}\)
Tính \(A=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
\(A=\frac{3}{3}.\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\right)\)
\(A=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{20}\right)\)
\(A=\frac{1}{3}.\frac{9}{20}\)
\(A=\frac{3}{20}\)
\(A=\frac{1}{2\times5}+\frac{1}{5\times8}+...+\frac{1}{17\times20}\)
\(A\times3=\frac{3}{2\times5}+\frac{3}{5\times8}+...+\frac{3}{17\times20}\)
\(A\times3=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\)
\(A\times3=\frac{1}{2}-\frac{1}{20}\)
\(A\times3=\frac{9}{20}\)
\(A=\frac{3}{20}\)
\(A=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
\(\Rightarrow A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\)
\(\Rightarrow3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\)
\(\Rightarrow3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)
\(\Rightarrow3A=\frac{1}{2}-\frac{1}{20}\)
\(\Rightarrow3A=\frac{9}{20}\)
\(\Rightarrow A=\frac{3}{20}\)
Tính A = \(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
Bạn tách mẫu số ra kiểu 2 x 5
5 x 8
........
Cứ như thế
Sau đó rút gọn
Thực hiện một phép tính nữa
Vậy là ra kết quả
\(A=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
\(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\)
\(3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\)
\(3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)
\(3A=\frac{1}{2}-\frac{1}{20}\)
\(3A=\frac{9}{20}\)
\(\Rightarrow A=\frac{3}{20}\)
Tính
A= \(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&####################################################################################++++++++++++++++++++++++++++++++++++++++++++++++++++++++)))))))))))))))))))))))))))))))))))(((((((((((((((((((((((((((((((((((((((((((((((((:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""???????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<{{{{{{{{{{{{{{{Ơ:::::::::LLLLLLLPPPPPPPPPPP"""""""}}}}Ư???????????????????"""""""""""""""{||||||||||||||||||||||||:???????Ơ"""""""":???"""""""""""Ư|
Tìm A :
1 / A = ( 1 -\(\frac{1}{3}\)) + ( 1 - \(\frac{1}{15}\)) + ( 1 - \(\frac{1}{35}\)) + ( 1 - \(\frac{1}{63}\))
2 / A = ( 1 -\(\frac{1}{10}\)) + ( 1 - \(\frac{1}{40}\)) + ( 1 - \(\frac{1}{88}\)) + ( 1 - \(\frac{1}{154}\))
3 / A = \(\frac{2}{3}+\frac{14}{15}+\frac{34}{35}+....+\frac{9998}{9999}\)
4 / A = \(\frac{9}{10}+\frac{39}{40}+\frac{87}{88}+...+\frac{1119}{1120}\)
5 / A = \(\frac{9}{10}+\frac{39}{40}+\frac{87}{88}+\frac{153}{154}\)
Trình bày cách làm hộ mình nha ! Cảm ơn rất nhiều !
bạn ơi tách ra thừa số chung rồi làm như bình thường nha
1, A=\(\left(1+1+1+1\right)\)-\(\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}\right)\)
=4-\(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)\)
= 4-\(\left(\frac{1}{1}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{9}\right)\)
=4-\(\left(1-\frac{1}{9}\right)\)
= 4-\(\frac{8}{9}\)
= \(\frac{7}{9}\)
Câu 2 tương tự như câu 1
A=\(\left(1+1+1+1\right)\)-\(\left(\frac{1}{10}+\frac{1}{40}+...+\frac{1}{154}\right)\)
A= 4 -\(\left(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{11.14}\right)\)
Bạn tự làm tiếp
\(\left(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+...+\frac{1}{340}\right)\cdot20=\frac{2x}{10}\)
\(\Rightarrow\left[\frac{1}{2\times5}+\frac{1}{5\times8}+...+\frac{1}{17\times20}\right]\cdot\frac{2x}{10}\)
\(\Rightarrow\left[\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{17}-\frac{1}{20}\right]\right]\cdot20=\frac{2x}{10}\)
\(\Rightarrow\left[\frac{1}{3}\left[\frac{1}{2}-\frac{1}{20}\right]\right]\cdot20=\frac{2x}{10}\)
\(\Rightarrow\left[\frac{1}{3}\cdot\frac{9}{20}\right]\cdot20=\frac{2x}{10}\)
\(\Rightarrow\frac{3}{20}\cdot20=\frac{2x}{10}\)
\(\Rightarrow3\cdot20=\frac{2x}{10}\Leftrightarrow60=\frac{2x}{10}\)
=> 2x = 60*10
=> 2x = 600
=> x = 300
\(\left(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+...+\frac{1}{340}\right).20=\frac{2x}{10}\)
\(\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{17.20}\right).20=\frac{2x}{10}\)
\(\left[3.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{17}-\frac{1}{20}\right)\right].20=\frac{2x}{10}\)
\(\left[3.\left(\frac{1}{2}-\frac{1}{20}\right)\right].20=\frac{2x}{10}\)
\(\left(3.\frac{9}{20}\right).20=\frac{2x}{10}\)
\(\frac{27}{20}.20=2x\div10\)
\(27=2x\div10\)
\(x=27\times10\div2\)
\(\Rightarrow x=135\)
\(\left(\frac{1}{10}+\frac{1}{40}+.....+\frac{1}{340}\right).20=\frac{2x}{10}\)
\(\Leftrightarrow\frac{x}{5}=\left(\frac{1}{2.5}+\frac{1}{5.8}+......+\frac{1}{17.20}\right).20\)
\(\Leftrightarrow\frac{x}{5}=\frac{3}{3}.\left(\frac{1}{2.5}+\frac{1}{5.8}+.....+\frac{1}{17.20}\right).20\)
\(\Leftrightarrow\frac{x}{5}=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+......+\frac{3}{17.20}\right).20\)
\(\Leftrightarrow\frac{x}{5}=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+......+\frac{1}{17}-\frac{1}{20}\right).20\)
\(\Leftrightarrow\frac{x}{5}=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{20}\right).20\)
\(\Leftrightarrow\frac{x}{5}=\frac{1}{3}.\frac{9}{20}.20\)
\(\Leftrightarrow\frac{x}{5}=3\)
\(\Leftrightarrow x=3.5\)
\(\Leftrightarrow x=15\)
Tính :\(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
S=\(\frac{1}{10}\)+ \(\frac{1}{40}\)+\(\frac{1}{88}\)+\(\frac{1}{154}\)+\(\frac{1}{238}\)+\(\frac{1}{340}\)
S=\(\frac{1}{2.5}\)+\(\frac{1}{5.8}\)+\(\frac{1}{8.11}\)+\(\frac{1}{11.14}\)+\(\frac{1}{14.17}\)+\(\frac{1}{17.20}\)
S= \(\frac{1}{3}\).(\(\frac{3}{2.5}\)+\(\frac{3}{5.8}\)+\(\frac{3}{8.11}\)+\(\frac{3}{11.14}\)+\(\frac{3}{14.17}\)+\(\frac{3}{17.20}\))
S= \(\frac{1}{3}\).(\(\frac{1}{2}\)-\(\frac{1}{20}\))
S= \(\frac{1}{3}\).\(\frac{9}{20}\)
S=\(\frac{3}{20}\)
\(S=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
\(S=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\)
\(3S=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\)
\(3S=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-....-\frac{1}{20}\)
\(3S=\frac{1}{2}-\frac{1}{20}=\frac{9}{20}\)
\(\Rightarrow S=\frac{9}{20}:3=\frac{3}{20}\)
\(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
giúp mình tính nhanh nhé!
\(\frac{1}{10}\)+\(\frac{1}{40}\)+\(\frac{1}{88}\)+\(\frac{1}{154}\)+\(\frac{1}{238}\)+\(\frac{1}{340}\)
=\(\frac{1}{2.5}\)+\(\frac{1}{5.8}\)+\(\frac{1}{8.11}\)+\(\frac{1}{11.14}\)+\(\frac{1}{14.17}\)+\(\frac{1}{17.20}\)
=\(\frac{1}{3}\)(\(\frac{3}{2.5}\)+\(\frac{3}{5.8}\)+\(\frac{3}{8.11}\)+\(\frac{3}{11.14}\)+\(\frac{3}{14.17}\)+\(\frac{3}{17.20}\))
=\(\frac{1}{3}\)(\(\frac{1}{2}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{8}\)+\(\frac{1}{8}\)-\(\frac{1}{11}\)+\(\frac{1}{11}\)-\(\frac{1}{14}\)+\(\frac{1}{14}\)-\(\frac{1}{17}\)+\(\frac{1}{17}\)-\(\frac{1}{20}\))
=\(\frac{1}{3}\)(\(\frac{1}{2}\)-\(\frac{1}{20}\))
=\(\frac{1}{3}\).\(\frac{9}{20}\)
=\(\frac{3}{20}\)
Ta có: S = 1/10 + 1/40 + 1/88 + 1/154 + 1/238 + 1/340
=> S = 1/2.5 + 1/5.8 + 1/8.11 + 1/11.14 +1/14.17 +1/17.20
Nhân 2 vế với 3 và áp dụng công thức tách 1 phân số thành hiệu 2 phân số: x/n.(n + x) = 1/n - 1/(n + x)
=> 3.S = 3.(1/2.5 + 1/5.8 + 1/8.11 +1/11.14 +1/14.17 +1/17.20)
=> 3.S = 3/2.5 + 3/5.8 + 3/8.11 + 3/11.14 +3/14.17 +3/17.20
=> 3.S = 1/2 - 1/ 5 + 1/5 - 1/8 + 1/8 - 1/11 + 1/11 - 1/14 + 1/14 - 1/17 + 1/17 -1/20
=> 3.S = 1/2 - 1/20
=> 3.S = 9/20
=> S = 3/20
Tính: \(y=\frac{1}{10}-\frac{1}{40}-\frac{1}{88}-\frac{1}{154}-\frac{1}{238}-\frac{1}{340}\)