\(\frac{5}{1.6}+\frac{5}{6.11}+..+\frac{5}{\left(5x+1\right).\left(5x+6\right)}=\frac{2005}{2006}\)
tìm x
d) \(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{\left(5x+1\right)\left(5x+6\right)}=\frac{2005}{2006}\)
1-1/6+1/6-1/11+...+1/5x+1-1/5x+6=2005/2006
1-1/5x+6=1-1/2006
5x+6=2006
5x=2000
x=400
\(1-\frac{1}{5x+6}=\frac{2005}{2006}\Leftrightarrow5x+6=2006\Leftrightarrow x=400\)
tìm x,y thỏa mãn
a.\(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right).\left(5x+6\right)}=\frac{2010}{2011}\)
\(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right).\left(5x+6\right)}=\frac{2010}{2011}\)
\(\Rightarrow1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2010}{2011}\)
\(\Rightarrow1-\frac{1}{5x+6}=\frac{2010}{2011}\)
\(\Rightarrow\frac{1}{5x+6}=1-\frac{2010}{2011}\)
\(\Rightarrow\frac{1}{5x+6}=\frac{1}{2011}\)
\(\Rightarrow5x+6=2011\)
\(\Rightarrow5x=2011-6\)
\(\Rightarrow5x=2005\)
\(\Rightarrow x=401\)
\(\frac{5}{1.6}+\frac{_{ }5}{6.11}+...+\frac{5}{(5x+1)(5x+6)}=\frac{2005}{2006}\)
các bạn giúp mình với ,tớ cảm ơn nhiều
\(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2005}{2006}\)
\(\frac{1}{1}-\frac{1}{5x+6}=\frac{2005}{2006}\)
\(-\frac{1}{5x+6}=\frac{2005}{2006}-\frac{1}{1}\)
\(-\frac{1}{5x+6}=-\frac{1}{2006}\)
\(\Rightarrow\frac{1}{5x+6}=\frac{1}{2006}\)
⇒ 5x + 6 = 2006
⇒ 5x = 2006 - 6 = 2000
⇒ x = 2000 : 5 = 400
Vậy x = 400
Tìm x:
a,\(\frac{x+1}{2}=\frac{8}{x+1}\) b,\(x:\left(9\frac{1}{2}-\frac{3}{2}\right)=\frac{0,4+\frac{2}{9}-\frac{2}{11}}{1,6+\frac{8}{9}-\frac{8}{11}}\)
c, x + (x + 1) + (x + 2) +...+ (x + 30)=1240 d) \(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x\right)+1\left(5x\right)+6}=\frac{2005}{2006}\)
a,\(\frac{x+1}{2}\)\(=\frac{8}{x+1}\)
\(\Leftrightarrow\)(x+1)\(\times\)(x+1) = 8 \(\times\)2
\(\Leftrightarrow\)(x+1)2 = 16
\(\Leftrightarrow\)(x+1)2 = 42
\(\Rightarrow\)x+1 = 4
\(\Rightarrow\)x = 4 - 1
\(\leftrightarrow\)x = 3
Tìm x :
\(\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+..+\frac{1}{\left(5x+1\right)\left(5x+6\right)}=\frac{10}{41}\)
Ta có :
\(\frac{5}{1.6}+\frac{5}{6.11}+................+\frac{5}{\left(5.x+1\right).\left(5.x+6\right)}=\)\(\frac{50}{41}\)
=> \(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...............+\frac{1}{5.x+1}-\frac{1}{5.x+6}\) = \(\frac{50}{41}\)
=> \(1-\frac{1}{5.x+6}=\frac{50}{41}\)
=> \(\frac{1}{5.x+6}=\frac{-9}{41}\)................ mình ko tìm ra vì p/s kia ko có tử là 1
bạn xem lại đề bài giúp mình nha
Giải phương trình :
a) \(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\)
b) \(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
c) \(6x^4-5x^3-38x^2-5x+6=0\)
\(b,\)\(\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Rightarrow\left(\frac{x+1}{2008}+1\right)+\left(\frac{x+2}{2007}+1\right)+\left(\frac{x+3}{2006}+1\right)=\left(\frac{x+4}{2005}+1\right)+\left(\frac{x+5}{2004}+1\right)+\left(\frac{x+6}{2003}+1\right)\)
\(\Rightarrow\frac{x+2009}{2008}+\frac{x+2009}{2007}+\frac{x+2009}{2006}=\frac{x+2009}{2005}+\frac{x+2009}{2004}+\frac{x+2009}{2003}\)
\(\Rightarrow\left(x+9\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}\right)=\left(x+9\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)\)
\(\Rightarrow\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}=\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\left(KTM\right)\)
\(\text{Giải}\)
\(b,\frac{x+1}{2008}+\frac{x+2}{2007}+\frac{x+3}{2006}=\frac{x+4}{2005}+\frac{x+5}{2004}+\frac{x+6}{2003}\)
\(\Leftrightarrow\left(x+2009\right)\left(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}-\frac{1}{2005}-\frac{1}{2004}-\frac{1}{2003}\right)=0\)
\(\Leftrightarrow x+2009=0\Leftrightarrow x=-2009\)
Forever Miss You nếu (x-2009)=0
thì \(\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2006}=\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\text{ko}?\)
nếu làm cách đó xét 2 trường hợp :")
Giải phương trình:
1.\(\frac{x-5}{x-5}+\frac{x-6}{x-5}+\frac{x-7}{x-5}+...+\frac{1}{x-5}=4\left(x\in N\right)\)
2.\(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+...+\frac{1}{x^2+15x+56}=\frac{1}{14}\)
3.\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{x\left(x+2\right)}\right)=\frac{31}{16}\left(x\in N\right)\)
4.\(8\left(x^2+\frac{1}{x^2}\right)-34\left(x+\frac{1}{x}\right)+51=0\)
5.\(6x^4-5x^3-38x^2-5x+6=0\)
Tìm x biết :
a) x + \(\frac{4}{5.9}\)+\(\frac{4}{9.13}\)+\(\frac{4}{13.17}\)+ . . . + \(\frac{4}{41.45}\)= \(-\frac{37}{45}\)
b) \(\frac{5}{1.6}\)+\(\frac{5}{6.11}\)+ . . . + \(\frac{5}{\left(5x+1\right).\left(5x+6\right)}\)=\(\frac{2015}{2016}\)
c) \(\frac{2}{1.3}\)+\(\frac{2}{3.5}\)+\(\frac{2}{5.7}\)+. . . + \(\frac{2}{x\left(x+2\right)}\)= \(\frac{2017}{2018}\)
\(B=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right)...\left(1-\frac{1}{10000}\right)\)
\(D=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\)
Tính B và D
\(B=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right)...\left(1-\frac{1}{10000}\right)\)
\(=\left(\frac{4}{4}-\frac{1}{4}\right).\left(\frac{9}{9}-\frac{1}{9}\right)...\left(\frac{10000}{10000}-\frac{1}{10000}\right)\)
\(=\frac{3}{4}.\frac{8}{9}...\frac{9999}{10000}=\frac{3}{2.2}.\frac{2.4}{3.3}...\frac{99.101}{100.100}\)
\(=\frac{101}{100}\)
\(D=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\)
\(=5.\left(\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\right)\)
\(=5.\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\right)\)
\(=5.\left(\frac{1}{1}-\frac{1}{31}\right)=5.\left(\frac{31}{31}-\frac{1}{31}\right)=5.\frac{30}{31}=\frac{150}{31}\)