1. Cho x, y là các số thực dương thỏa mãn (\(\sqrt{x}\)+ 1)(\(\sqrt{y}\)+ 1) \(\geq \)4
Tìm GTNN của biểu thức P = \(\frac{x^2}{y}\)+ \(\frac{y^2}{x}\)
cho x, y là các số thực dương thỏa mãn x+y=4
tìm GTNN của : \(M=\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}\)
Với x, y là số thực dương thỏa mãn x+y<=1, tìm GTNN của biểu thức P=\(\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{1+x^2y^2}\)
Áp dụng bất đẳng thức AM - GM ta có :
\(P\ge\frac{2}{\sqrt{xy}}\sqrt{1+x^2y^2}=2\sqrt{\frac{1+x^2y^2}{xy}}=2\sqrt{\frac{1}{xy}+xy}\)
\(2\sqrt{\frac{1}{16xy}+xy+\frac{15}{16xy}}\ge2\sqrt{\sqrt{\frac{1}{16xy}.xy}+\frac{15}{4\left(x+y\right)^2}}=\sqrt{17}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
với x,y là các số thực dương thỏa mãn \(x+y\le1\) tìm gtnn của biểu thức P=\(\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{1+x^2y^2}\)
Ta có: \(1\ge x+y\ge2\sqrt{xy}\Rightarrow1\ge4xy\Rightarrow\frac{1}{xy}\ge4\)
\(\Rightarrow P\ge2\sqrt{\frac{1}{xy}}\cdot\sqrt{1+x^2y^2}=2\sqrt{\frac{1}{xy}+xy}\)
Mà \(\frac{1}{xy}+xy=\frac{15}{16}\cdot\frac{1}{xy}+\frac{1}{16xy}+xy\)
\(\ge\frac{15}{16}\cdot4+2\sqrt{\frac{1}{16xy}\cdot xy}=\frac{15}{16}\cdot4+\frac{2}{4}=\frac{17}{4}\)
\(\Rightarrow P\ge2\cdot\frac{\sqrt{17}}{2}=\sqrt{17}\) xảy ra khi \(x=y=\frac{1}{2}\)
Cho các số thực x,y thỏa mãn: \(\frac{y}{x-2}=\frac{\sqrt{x-2}+1}{\sqrt{y}+1}\).Tìm GTNN của biểu thức \(Q=xy-3y-x+2018\)
Cho các số dương x,y thỏa mãn : \ \left \sqrt{x} 1\right \left 2\sqrt{y} 4\right y\ge13\ 13 . Tìm GTNN của biểu thức : P \ \frac{x 4}{y} \frac{y 3}{x} y\
K ai làm đc hả :((
Có cách khác nè:
P=x4(x−1)3+y4(y−1)3≥2√x4y4(x−1)3(y−1)3x4(x−1)3+y4(y−1)3≥2x4y4(x−1)3(y−1)3
⇒P≥2x2y2√(x−1)3(y−1)3=2.x2x−1.y2y−1.1√(x−1)(y−1)⇒P≥2x2y2(x−1)3(y−1)3=2.x2x−1.y2y−1.1(x−1)(y−1)
Ta dễ dàng chứng minh được a2a−1≥4a2a−1≥4
⇒P≥2.4.4.1√(x−1)(y−1)≥32.1x−1+y−12≥32⇒P≥2.4.4.1(x−1)(y−1)≥32.1x−1+y−12≥32
Dấu "=" khi x=y=2
x4(x−1)3+16(x−1)≥8.x2(x−1)x4(x−1)3+16(x−1)≥8.x2(x−1)
Tương tự và cộng hai BĐT lại :
p+16(x−1)+16(y−1)≥8.(x2x−1+y2y−1)p+16(x−1)+16(y−1)≥8.(x2x−1+y2y−1)
Ta xét A=x2x−1+y2y−1A=x2x−1+y2y−1
Đặt x - 1 = a và y - 1 = b, ta có A=(a+1)2a+(b+1)2b=a+2+1a+b+2+1b≥(a+b)+4a+b+4≥2√4+4=8⇒A≥8A=(a+1)2a+(b+1)2b=a+2+1a+b+2+1b≥(a+b)+4a+b+4≥24+4=8⇒A≥8
Do đó P≥8A−16(x+y)+32≥8.8−16.4+32=32P≥8A−16(x+y)+32≥8.8−16.4+32=32
Min P = 32 <=> x = y = 2
cho 3 số thực dương x,y,z thỏa mãn x+y+z=xyz
tìm giá trị lớn nhất của biểu thức p=\frac{1}{\sqrt{x^2+1}}\:+\frac{1}{\sqrt{\gamma ^2+1}}+\frac{1}{\sqrt{z^2+1}}
Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn
Cho x,y,z là các số thực dương, thỏa mãn \(x+y+z\le1\)
Tìm giá trị nhỏ nhất của biểu thức \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\)
Áp dụng bất đẳng thức Minkowski ta có:
\(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)
\(\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{9}{x+y+z}\right)^2}=\sqrt{\left(x+y+z\right)^2+\frac{81}{\left(x+y+z\right)^2}}\)
\(=\sqrt{\left[\left(x+y+z\right)^2+\frac{1}{\left(x+y+z\right)^2}\right]+\frac{80}{\left(x+y+z\right)^2}}\)
\(\ge\sqrt{2\sqrt{\left(x+y+z\right)^2\cdot\frac{1}{\left(x+y+z\right)^2}}+\frac{80}{1}}=\sqrt{82}\)
Dấu "=" xảy ra khi: \(x=y=z=\frac{1}{3}\)
Áp dụng bất đẳng thức Minkowski ta có:
√x2+1x2 +√y2+1y2 +√z2+1z2 ≥√(x+y+z)2+(1x +1y +1z )2
≥√(x+y+z)2+(9x+y+z )2=√(x+y+z)2+81(x+y+z)2
=√[(x+y+z)2+1(x+y+z)2 ]+80(x+y+z)2
≥√2√(x+y+z)2·1(x+y+z)2 +801 =√82
Dấu "=" xảy ra khi: x=y=z=13
Cho x, y là các số thực dương thỏa mãn x+y<=1. Tìm giá trị nhỏ nhất của biểu thức P=\(\left(\frac{1}{X} +\frac{1}{Y}\right).\sqrt{1+X^2Y^2}\)
\(\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{1+x^2y^2}\)
\(\ge\frac{2}{\sqrt{xy}}\sqrt{1+x^2y^2}=2\sqrt{\frac{1}{xy}+xy}=2\sqrt{\frac{1}{16xy}+xy+\frac{15}{16xy}}\)
\(\ge2\sqrt{2\sqrt{\frac{1}{16xy}\cdot xy}+\frac{15}{4\left(x+y\right)^2}}=2\sqrt{\frac{1}{2}+\frac{15}{4}}=\sqrt{17}\)
Dấu "=" xảy ra tai x=y=1/2
Cho các số dương x,y thỏa mãn : \(\left(\sqrt{x}+1\right)\left(2\sqrt{y}+4\right)+y\ge13\)13 . Tìm GTNN của biểu thức : P=\(\frac{x^4}{y}+\frac{y^3}{x}+y\)