Cho A = 1/ 101 + 1/ 102 + 1/103+...+ 1/ 200
Chứng minh rằng : A > 7/ 12
Cho A = 1/101+1/102+1/103+...+1/200
Chứng minh rằng A>7/12
Chứng minh rằng :
a) 7/12 <1/101+1/102+1/103+...+1/200 <1
b) 1/101+1/102+1/103+...+1/150>1/3
a ) Số lượng số của dãy số trên là :
\(\left(200-101\right):1+1=100\) ( số )
Do \(100⋮2\)nên ta nhóm dãy số trên thành 2 nhóm như sau :
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)
\(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};...;\frac{1}{149}>\frac{1}{150};\frac{1}{150}=\frac{1}{150}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\left(1\right)\)
\(\frac{1}{151}>\frac{1}{200};\frac{1}{152}>\frac{1}{200};...;\frac{1}{199}>\frac{1}{200};\frac{1}{200}=\frac{1}{200}\)
\(\Rightarrow\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}>\frac{1}{200}.50=\frac{1}{4}\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{3}+\frac{1}{4}=\frac{7}{2}\left(3\right)\)
\(\frac{1}{101}< \frac{1}{100};\frac{1}{102}< \frac{1}{100};...;\frac{1}{199}< \frac{1}{100};\frac{1}{200}< \frac{1}{100}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< \frac{1}{100}.100=1\left(4\right)\)
Từ \(\left(3\right);\left(4\right)\Rightarrowđpcm\)
b ) Số lượng số dãy số trên là :
\(\left(150-101\right):1+1=50\)( số )
Ta có : \(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};\frac{1}{103}>\frac{1}{150};...;\frac{1}{150}=\frac{1}{150}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\)
\(\Rightarrowđpcm\)
cho A=1/101+1/102+1/103+...+1/200
Chứng minh rằng:
a)A>7/12
b)A>5/8
Cho A=1/101+1/102+1/103+...+1/200
Chứng minh A>7/12
Cho A={1/101+1/102+1/103+...+1/200}
Chứng minh A>7/12
cho A= 1/101 + 1/102+ 1/103+ ...+1/200
chứng mnh rằng A>7/12, A>5/8
a= 1/101+1/102+1/103+..+1/200 chứng minh a>7/12
Chứng minh rằng \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{200}>\dfrac{7}{12}\)
Ta có:
\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{150}>\dfrac{1}{150}+\dfrac{1}{150}+\dfrac{1}{150}+\dfrac{1}{150}+...+\dfrac{1}{150}\) (có 50 số hạng)
⇔ \(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{150}>\dfrac{1}{3}\) \(\left(1\right)\)
\(\dfrac{1}{151}+\dfrac{1}{152}+\dfrac{1}{153}+...+\dfrac{1}{200}>\dfrac{1}{200}+\dfrac{1}{200}+\dfrac{1}{200}+...+\dfrac{1}{200}\) (có 50 số hạng)
⇔ \(\dfrac{1}{151}+\dfrac{1}{152}+\dfrac{1}{153}+...+\dfrac{1}{200}>\dfrac{1}{4}\) \(\left(2\right)\)
Từ (1) và (2), cộng vế theo vế. Ta được:
\(\dfrac{1}{101}+\dfrac{1}{102}+\dfrac{1}{103}+...+\dfrac{1}{150}+\dfrac{1}{151}+\dfrac{1}{152}+\dfrac{1}{153}+...+\dfrac{1}{200}>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\)
⇒ \(ĐPCM\)
Cho biểu thức A= \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....................+\frac{1}{200}\). Chứng minh rằng \(A>\frac{7}{12}\)
Số số hạng của A là:
(200-101):1+1=100(số)
Nếu ta nhóm A thành các nhóm,mỗi nhóm 50 số hạng ta được :
100:50=2(nhóm)
Ta có :
A=(1/101+1/102+...+1/150)+(1/151+1/152+1/153+...+1/200)
Vì 1/101<1/102<1/103<...<1/150 nên 1/101+1/102+...+1/150<1/150x50
1/151<1/152<1/153<...<1/200 nên 1/151+1/152+1/153+...+1/200<1/200x50
Từ 3 điều trên suy ra:
A<1/150x50+1/200x50
A<1/3+1/4
A<7/12
vậy A<7/12
❤~~~ HỌC TỐT~~~❤Đặng Khánh Duy