8 x5 x125 x4 x2 x25
TỊM x1+x2+x3+x4+x5+xx6
x1+x2=x3+x4=x5+x6=2bieestx1+x2+x3+x4+X5+x6=0
cho x1, x2, x3, x4, x5 thuộc tập hợp số nguyên
biết x1 + x2 + x3 + x4 + x5=0 và x1+ x2 = x3+ x4 = x4+ x5=2
tính x3, x4, x5
cho 5 số:x1,x2,x3,x4,x5 mỗi số =1 hoặc = -1.Chứng minh: x1.x2+x2.x3+x3.x4+x4.x5+x5.x1 khác 0
x1;x2;x3;x4;x5=-1 hoặc 1
=>x1.x2;x2.x3;x3.x4;x4.x5;x5.x1 bằng 1 hoặc -1
giả sử x1.x2+x2.x3+x3.x4+x4.x5+x5.x1=0
=>số các số hạng 1 và -1 bằng nhau
=>số các số hạng chia hết cho 2
=>5 chia hết cho 2(có 5 số hạng) Vô lí
=>x1.x2+x2.x3+x3.x4+x4.x5+x5.x1\(\ne0\)
=>đpcm
chtt
ai làm ơn tích mình ,mình tích lại cho
x1x2+x2x3+x3x4+x4x5+x5x1=[(x2)*2]+[(x2)*6]+[(x2)*12]+[(x2)*20]+[(x2)*5]=(x2)*(2+6+12+20+5)
Mà x2 là số dương và 2+6+12+20+5 cũng là số dương nên x1x2+x2x3+x3x4+x4x5+x5x1 khác 0
tick nha
tìm X1, X2,X3,X4,X5,X6,BIẾT:
X1+X2=X3+X4=X5+X6=2,BIẾT :
X1+X2+X3+X4+X5+X6=0
X1+X2=X3+X4=X5+X6=2
nên X1+X2+X3+X4+X5+X6=0
2+2+2=0
6=0(loại)
vậy không có giá trị nào thỏa mãn đề
1. cho 6 số khác 0 x1,x2,x3,x4,x5,x6 thỏa mãn điều kiện
x2 mũ 3 = x1.x3, x3 mũ 2 =x2.x4
x4 mũ 2 = x3.x5 , x5 mũ 2 = x4.x6
Bài 1: Cho x1,x2,x3,x4,x5,x6,x7 ϵ Z biết x1+x2+x3+x4+x5+x6+x7=0 và x1+x2=x3+x4=x5+x6=x6+x7=-2.Tính x7,x6,x5
Bài 2: Cho x1,x2...,x75 ϵ Z biết x1+x2+...+x75=0 và x1+x2=x3+x4=...=x71+x72=x73+x74=x74+x75=1
Các bạn ơi giúp mình vs ạ,mình đang cần gấp!!!
Cho x1 ,x2, x3 , x4 , x5 thuộc z.
Biết x1+x2=x3+x4=x4+x5=2 và
Tất cả 5 số cộng lại = 0
Tính x5 , x4 và x3
giải
ta có :
\(x1+x2+x3+x4+x5=0\)
\(\left(x1+x2\right)+\left(x3+x4\right)+x5=0\)
\(\Rightarrow2+2+x5=0\Rightarrow x5=-4\)
mà \(x4+x5=2\Rightarrow x4+-4=2\Rightarrow x4=6\)
mặt khác : \(x3+x4=2\Rightarrow x3+6=2\Rightarrow x3=-4\)
vậy : x5 = -4 , x4 = 6 , x3 = -4
Ta có : \(\left\{{}\begin{matrix}x_1+x_2=2\left(I\right)\\x_3+x_4=2\left(II\right)\\x_4+x_5=2\left(III\right)\\x_1+x_2+x_3+x_4+x_5=5\left(IV\right)\end{matrix}\right.\)
Thay (I) và (II) vào (IV) ta được : 2+2+x5=5 => x5=1
Thay x5=1 vào (III) ta được: x4=1
Thay x4=1 vào (II) ta được: x3=1
Vậy x3=x4=x5=1
Tìm các số x1, x2, x3, x4, x5 biết \(\dfrac{x1-1}{5}=\dfrac{x2-2}{4}=\dfrac{x3-3}{3}=\dfrac{x4-4}{2}=\dfrac{x5-5}{1}vàx1+x2+x3+x4+x5=30\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x_1-1}{5}=\dfrac{x_2-2}{4}=\dfrac{x_3-3}{3}=\dfrac{x_4-4}{2}=\dfrac{x_5-5}{1}\)
\(=\dfrac{\left(x_1-1\right)+\left(x_2-2\right)+\left(x_3-3\right)+\left(x_4-4\right)+\left(x_5-5\right)}{5+4+3+2+1}\)
\(=\dfrac{\left(x_1+x_2+x_3+x_4+x_5\right)-\left(1+2+3+4+5\right)}{15}\)
\(=\dfrac{30-15}{15}=1\)
\(\Rightarrow x_1=x_2=x_3=x_4=x_5=6\)
Vậy...
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x1-1}{5}\)=\(\dfrac{x2-2}{4}\)\(\dfrac{x3-3}{3}\)=\(\dfrac{x4-4}{2}\)=\(\dfrac{x5-5}{1}\)=\(\dfrac{x1-1+x2-2+x3-3+x4-4+x5-5}{5+4+3+2+1}\)=\(\dfrac{x1+x2+x3+x4+x5-\left(1+2+3+4+5\right)}{15}\)=\(\dfrac{30-15}{15}\)=\(\dfrac{15}{15}\)=1
\(\dfrac{x1-1}{5}\)=1 => x1-1=5 => x1 =6
\(\dfrac{x2-2}{4}\)=1 => x2-2=4 => x2 =6
\(\dfrac{x3-3}{3}\)=1 => x3-3=3 => x3 =6
\(\dfrac{x4-4}{2}\)=1 => x4-4=2 => x4 =6
\(\dfrac{x5-5}{1}\)=1 => x5-5=1 => x5 = 6
Vậy x1=x2=x3=x4=x5 =6
Cau 1:
Tim x, biet: 1-4+7-10+.............-x=-75
Cau 2:
Cho x1, x2, x3, x4, x5 thuộc Z
Biết x1+ x2 + x3 + x4 + x5=0
và x1 + x2=x3+ x4= x4 + x5 =2
Tinh x3, x4 , x5
Cau 3: Tim x biet
(x+7+1) chia het cho (x+7)