\(\frac{x-3}{2014}\)-\(\frac{x-2}{2015}\)=\(\frac{x-1}{1008}\)+\(\frac{x}{2017}\)-1
Giải pt: \(\frac{x-3}{2014}+\frac{x-2}{2015}=\frac{x-1}{1008}+\frac{x}{2017}-1\)
Giải phương trình \(\frac{x-3}{2014}+\frac{x-2}{2015}=\frac{x-1}{1008}+\frac{x}{2017}-1\)
\(\frac{x-3}{2014}+\frac{x-2}{2015}=\frac{x-1}{1008}+\frac{x}{2017}-1\)
Hãy giải pt này
\(PT\Leftrightarrow\left(\frac{x-3}{2014}-1\right)+\left(\frac{x-2}{2015}-1\right)=\left(\frac{x-1}{1008}-2\right)+\left(\frac{x}{2017}-1\right)\)
\(\Leftrightarrow\frac{x-2017}{2014}+\frac{x-2017}{2015}=\frac{x-2017}{1008}+\frac{x-2017}{2017}\)
\(\Leftrightarrow\frac{x-2017}{2014}+\frac{x-2017}{2015}-\frac{x-2017}{1008}-\frac{x-2017}{2017}=0\)
\(\Leftrightarrow\left(x-2017\right)\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{1008}-\frac{1}{2017}\right)=0\)
\(\Rightarrow x=2017\)
\(\frac{x}{2012}+\frac{x-1}{2013}+\frac{x-2}{2014}-\frac{x-3}{2015}=\frac{x-4}{1008}\)
\(\frac{x}{2012}+\frac{x-1}{2013}+\frac{x-2}{2014}-\frac{x-3}{2015}=\frac{x-4}{1008}\)
\(\Leftrightarrow\left(\frac{x}{2012}+1\right)+\left(\frac{x-1}{2013}+1\right)+\left(\frac{x-2}{2014}+1\right)-\left(\frac{x-3}{2015}+1\right)=\frac{x-4}{1008}+2\)
\(\Leftrightarrow\frac{x+2012}{2012}+\frac{x+2012}{2013}+\frac{x+2012}{2014}-\frac{x+2012}{2015}=\frac{x-4+1008.2}{1008}\)
\(\Leftrightarrow\frac{x+2012}{2012}+\frac{x+2012}{2013}+\frac{x+2012}{2014}-\frac{x+2012}{2015}=\frac{x+2012}{1008}\)
\(\Leftrightarrow\frac{x+2012}{2012}+\frac{x+2012}{2013}+\frac{x+2012}{2014}-\frac{x+2012}{2015}-\frac{x+2012}{1008}=0\)
\(\Leftrightarrow\left(x+2012\right)\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{1008}\right)=0\)
Vì \(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{1008}\ne0\)
\(\Rightarrow x+2012=0\)\(\Leftrightarrow x=-2012\)
Vậy \(x=-2012\)
Chu Công Đứcbạn làm kết quả đúng nhưng trình bày sai rồi vế phải bạn cộng 2 nhưng vế trái bạn cộng 4???
Nhưng nếu vế phải +2 thì kết quả có thay đổi ko vậy ạ
Tìm x biết:
\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x+2015=\frac{2016}{1}+\frac{2017}{2}+...+\frac{4029}{2014}+\frac{4030}{2015}\)
\(\frac{x-1}{2017}+\frac{x-2}{2016}+\frac{x-3}{2015}+\frac{x-4}{2014}=2^2\)
Ta có :
\(\frac{x-1}{2017}+\frac{x-2}{2016}+\frac{x-3}{2015}+\frac{x-4}{2014}=2^2\)
\(\Leftrightarrow\)\(\left(\frac{x-1}{2017}-1\right)+\left(\frac{x-2}{2016}-1\right)+\left(\frac{x-3}{2015}-1\right)+\left(\frac{x-4}{2014}-1\right)=2^2-4\)
\(\Leftrightarrow\)\(\frac{x-2018}{2017}+\frac{x-2018}{2016}+\frac{x-2018}{2015}+\frac{x-2018}{2014}=4-4\)
\(\Leftrightarrow\)\(\left(x-2018\right)\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}\right)=0\)
Vì \(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}\ne0\)
Nên \(x-2018=0\)
\(\Rightarrow\)\(x=2018\)
Vậy \(x=2018\)
Chúc bạn học tốt ~
\(\frac{x-1}{2017}+\frac{x-2}{2016}+\frac{x-3}{2015}+\frac{x-4}{2014}=2^2\)
\(\left(\frac{x-1}{2017}-1\right)+\left(\frac{x-2}{2016}-1\right)+\left(\frac{x-3}{2015}-1\right)+\left(\frac{x-4}{2014}-1\right)=0\)
\(\frac{x-2018}{2017}+\frac{x-2018}{2016}+\frac{x-2018}{2015}+\frac{x-2018}{2014}=0\)
\(\left(x-2018\right).(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014})=0\)
\(x-2018=0\left(Vì\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}\ne0\right)\)
\(\Rightarrow x=2018\)
\(\frac{x-1}{2017}+\frac{x-2}{2016}+\frac{x-3}{2015}+\frac{x-4}{2014}\)= 22
\(\frac{x-1}{2017}+\frac{x-2}{2016}+\frac{x-3}{2015}+\frac{x-4}{2014}=4\)
\(\frac{x-1}{2017}-1+\frac{x-2}{2016}-1+\frac{x-3}{2015}-1+\frac{x-4}{2015}-1=0\)
\(\frac{x-1}{2017}-\frac{2017}{2017}+\frac{x-2}{2016}-\frac{2016}{2016}+\frac{x-3}{2015}-\frac{2015}{2015}+\frac{x-4}{2014}-\frac{2014}{2014}=0\)
\(\frac{x-2018}{2017}+\frac{x-2018}{2016}+\frac{x-2018}{2015}+\frac{x-2018}{2014}=0\)
\(\left(x-2018\right)\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}\right)=0\)
\(=>\orbr{\begin{cases}x-2018=0\\\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}\right)=0\end{cases}}\)
Mà: \(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}>0\)
=> x - 2018 = 0 => x = 2018
Tìm x biết
a) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{47.49}=\frac{24}{x+1}\)
b) \(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{97.101}=\frac{2x+4}{101}\)
c) \(\frac{x-1}{2017}+\frac{x-2}{2016}=\frac{x-3}{2015}+\frac{x-4}{2014}\)
d) \(\frac{x+1}{2017}+\frac{x+2}{2016}=\frac{x+3}{2015}+\frac{x+4}{2014}\)
\(b)\) \(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{97.101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(1-\frac{1}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(\frac{100}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(100=2x+4\)
\(\Leftrightarrow\)\(2x=96\)
\(\Leftrightarrow\)\(48\)
Vậy \(x=48\)
Chúc bạn học tốt ~
\(a)\) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{47.49}=\frac{24}{x+1}\)
\(\Leftrightarrow\)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{47.49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{47}-\frac{1}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(1-\frac{1}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(\frac{48}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(49=x+1\)
\(\Leftrightarrow\)\(x=48\)
Vậy \(x=48\)
Chúc bạn học tốt ~
tìm x biết \(\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2015}\right)\times x+2015=\frac{2016}{1}+\frac{2017}{2}+.....+\frac{4029}{2014}+\frac{4030}{2015}\)
Bài 1: Tính giá trị biểu thức
A= \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}{\frac{2017}{1}+\frac{2016}{2}+\frac{2015}{3}+...+\frac{1}{2017}}\)
B= \(\frac{\frac{1}{51}+\frac{1}{53}+\frac{1}{55}+...+\frac{1}{149}}{\frac{1}{101.99}+\frac{1}{103.97}+...+\frac{1}{149.51}}\)
C= \(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}}\)
D= \(\frac{\frac{1}{1.300}+\frac{1}{2.301}+\frac{1}{3.302}+...+\frac{1}{101.400}}{\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+...+\frac{1}{299.4000}}\)
Bài 2: Tìm x, biết:
a) \(\frac{x+1}{2014}+\frac{x+2}{2013}+...+\frac{x+1007}{1008}=\frac{x+1008}{1007}+\frac{x+1009}{1006}+...+\frac{x+2014}{1}\)
b) \(\frac{2}{\left(x-1\right)\left(x-3\right)}+\frac{5}{\left(x-3\right)\left(x-8\right)}+\frac{12}{\left(x-8\right)\left(x-20\right)}-\frac{1}{x-20}=\frac{-1}{4}\)
Các bạn làm hết giúp mik nha! ^ ^
Bài 1 :
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2018}}{\frac{2017}{1}+\frac{2016}{2}+\frac{2015}{3}+...+\frac{1}{2017}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}{\left(\frac{2017}{1}+1\right)+\left(\frac{2016}{2}+1\right)+\left(\frac{2015}{3}+1\right)+...+\left(\frac{1}{2017}+1\right)+1}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}{\frac{2018}{1}+\frac{2018}{2}+\frac{2018}{3}+....+\frac{2018}{2017}+\frac{2018}{2018}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}{2018.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}\right)}\)
\(=\frac{1}{2018}\)
B=\(\frac{\frac{1}{51}+\frac{1}{53}+...+\frac{1}{149}}{\frac{1}{101.99}+\frac{1}{103.97}+...+\frac{1}{149.51}}\)
\(\)TA CÓ E=\(\frac{1}{101.99}+\frac{1}{103.97}+...+\frac{1}{149.51}\)
\(200E=\frac{200}{101.99}+\frac{200}{103.97}+..+\frac{200}{149.51}\)
\(200E=\frac{101+99}{101.99}+\frac{103+97}{103.97}+...+\frac{149+51}{149.51}\)
\(200E=\frac{1}{99}+\frac{1}{101}+\frac{1}{97}+\frac{1}{103}+...+\frac{1}{51}+\frac{1}{149}\)
\(200E=\frac{1}{51}+\frac{1}{53}+...+\frac{1}{147}+\frac{1}{149}\)
\(E=\left(\frac{1}{51}+\frac{1}{53}+...+\frac{1}{147}+\frac{1}{149}\right):200\)\(=\left(\frac{1}{51}+\frac{1}{53}+...+\frac{1}{147}+\frac{1}{149}\right).\frac{1}{200}\)
\(\Rightarrow B=\frac{1}{51}+\frac{1}{53}+...+\frac{1}{149}\)/\(\left(\frac{1}{51}+\frac{1}{53}+..+\frac{1}{149}\right).\frac{1}{200}\)
\(\Rightarrow B=\frac{1}{\frac{1}{200}}=200\)
VẬY B=200
Còn câu C thì bạn làm tương tự câu B thôi bạn nhé