S= 1/3+1/15+1/35+1/63+...+1/120
Tính nhanh
a, S= \(\dfrac{1}{3}\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{35}\) + \(\dfrac{1}{63}\) + \(\dfrac{1}{99}\) + \(\dfrac{1}{143}\)
b, A = \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{21}\) + \(\dfrac{1}{28}\)
c, H =\(\dfrac{4047991-2010x2009}{4050000-2011x2009}\)
d, T = \(\dfrac{2009x20010+2000}{2011x2010-2020}\)
e, P = \(\dfrac{7589-80,5x69,3}{7485,05-79x69,3}\)
f, B = 5,1 x 42,2 + 1,7 x 448 x 3 - 0,15 x 700
Giúp mình với
a=78/35
b=22/12
c=1/1
d=40202090/4040090
e=1,24025667172...
f=871,82
ko biết đúng ko [0_0'] hihi
a) A= 4/3.7 + 4/7.11 + 4/11.15 +...+ 4/107.111
b) B= 2/15 + 2/35 +2/63+...+ 2/399
c) C= 1/10 + 1/15 + 1/21+ ...+ 1/120
a.\(A=\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{107.111}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{107}-\frac{1}{111}\)
\(=\frac{1}{3}-\frac{1}{111}=\frac{37}{111}-\frac{1}{111}=\frac{36}{111}=\frac{12}{37}\)
Vậy A=\(\frac{12}{37}\)
b.\(B=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{399}\)
\(=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\)
\(=\frac{1}{3}-\frac{1}{21}=\frac{7}{21}-\frac{1}{21}=\frac{6}{21}=\frac{2}{7}\)
Vậy \(B=\frac{2}{7}\)
c.\(C=\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\)
\(\Rightarrow C.\frac{1}{2}=\left(\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\right).\frac{1}{2}\)
\(=\frac{1}{20}+\frac{1}{30}+...+\frac{1}{240}\)
\(=\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{15.16}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{15}-\frac{1}{16}\)
\(=\frac{1}{4}-\frac{1}{16}=\frac{4}{16}-\frac{1}{16}=\frac{3}{16}\)
Vậy \(C=\frac{3}{16}\)
A = \(\frac{4}{3.7}+\frac{4}{7.9}+...+\frac{4}{107.111}\)
A = \(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{107}-\frac{1}{111}\)
A = \(\frac{1}{3}-\frac{1}{111}\)=\(\frac{12}{37}\)
2 câu sau tương tự. Mik ngại làm lắm -_-
A 2/3 + 2/15 + 2/35 + 2/63
B (1/15 + 1/35 + 1/63) x X =1
A=12/15 + 28/315
A=8/9
B. 1/9 x X = 1 X= 1: 1/9X= 9Tính tổng :
B= 1/1.5+1/5.9+1/9.13+...+1/93.97
C= 3/1.3+3/3.5+3/5.7+...+3/97.99
D= 1/10+1/15+1/20+...+1/120
E= 2/15+2/35+2/63+...+2/399
Ai nhanh mk tick làm nhanh nhé mk cần gấp lắm
\(4.B=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{93.97}\)
\(4.B=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{93}-\frac{1}{97}\)
\(4.B=1-\frac{1}{97}\)
\(4.B=\frac{96}{97}\)
\(B=\frac{96}{97}:4\)
\(B=\frac{24}{97}\)
A=2/15 + 2/ 35 + 2/63 + ... + 2/1443
B= 1/10 + 1/15 + 1/21 + ... + 1/120
giai ca cach lm nhe thanks
ai lm dc mik ton lm sư phụ
\(A=\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+...+\frac{2}{1443}\)
\(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{37.39}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{37}-\frac{1}{39}\)
\(A=\frac{1}{3}-\frac{1}{39}\)
\(A=\frac{4}{13}\)
\(B=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\)
\(B=\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+...+\frac{2}{240}\)
\(B=2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)\)
\(B=2\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(B=2.\frac{3}{16}\)
\(B=\frac{3}{8}\)
1/15+1/35+1/63+...+1/(2x+1)×(2x+3)=15/93
\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
\(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}\right)=\frac{15}{93}\)
\(\frac{1}{2}\)\(\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}\right)\)\(=\frac{15}{93}\)
\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{2x+3}\right)=\frac{15}{93}\)
\(\frac{1}{3}-\frac{1}{2x+3}=\frac{15}{93}:\frac{1}{2}=\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}=\frac{1}{93}\)
\(\Rightarrow2x+3=93\rightarrow2x=90\rightarrow x=45\)
Tìm số hạng thứ 100 của các dãy được viết theo quy luật :
a) 3, 8, 15, 24, 35,... (1).
b) 3, 24, 63, 120, 195, ... (2).
c) 1, 3, 6, 10, 15, ... (3).
d) 2, 5, 10, 17, 26, ... (4).
Ta có:
a,3=1.3 ;8=2.4 ;15=3.5 ;24=4.6 ;35=5.7 ;....
=>Số hạng thứ 100 là:100.102=10200.
b,3=1.3 ;24=4.6 ;63=7.9 ;120=10.12 ;195=13.15....
Ta thấy:Mỗi thừa số đứng đầu của các số hạng trong tổng này có QLC là 3.
=>Thừa số đứng đầu của số hạng thứ 100 là:
(a-1):3+1=100 =>a=298
=>Số hạng thứ 100 của dãy là:298.300=89400
ban oi co the lam theo cach de hieu hon khong
tính:A=1/3+1/15+1/35+1/63+...+1/899
\(A=\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+...+\dfrac{1}{899}\\ 2A=2\cdot\dfrac{1}{3}+2\cdot\dfrac{1}{15}+2\cdot\dfrac{1}{35}+2\cdot\dfrac{1}{63}+...+2\cdot\dfrac{1}{899}\\ 2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{29}-\dfrac{1}{31}\\ 2A=1-\dfrac{1}{31}\\ 2A=\dfrac{30}{31}\\ A=\dfrac{30}{31}\div2\\ A=\dfrac{30}{31\cdot2}=\dfrac{15}{31}\)
:))
1/3, 1/15, 1/35, 1/63, ?
Ta có:1/3=1/1*3;1/15=1/3*5;1/35=1/5*7;1/63=1/7*9.
Ta thấy các phân số trên đều có mẫu số tách được thành các số lẻ liên tiếp và tử số là 1.Số lẻ sau 9 là 11.
Vậy mẫu số của phân số cuối là: 9*11=99
Phân số đó là 1/99
Đáp số : 1/99
1/3=1/1x1/3
1/15=1/3x1/5
1/35=1/5x1/7
1/63=1/7x1/9
?=1/9x1/11
vay ?=1/99
co hai cach