Cho c=3/4+8/9+15/16+...+2499/2500
CMR C lớn hơn 48 biết C có 49 số hạng
Cho \(C=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+....................+\dfrac{2499}{2500}\) Chứng minh \(C>48\)
Ta có:
\(C=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{2499}{2500}\)
\(\Rightarrow C=1-\dfrac{1}{4}+1-\dfrac{1}{9}+...+1-\dfrac{1}{2500}\)
\(\Rightarrow C=1-\dfrac{1}{2^2}+1-\dfrac{1}{3^2}+...+1-\dfrac{1}{50^2}\)
\(\Rightarrow C=\left(1+...+1\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\) (có \(49\) chữ số \(1\))
\(\Rightarrow C=49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)\)
Lại có:
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)
Mà \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=1-\dfrac{1}{50}< 1\)
\(\Rightarrow-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)>-1\)
\(\Rightarrow49-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)>49-1=48\)
Vậy \(C=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{2499}{2500}>48\) (Đpcm)
cho S = 3/4+8/9+15/16+24/25+....+2499/2500.Chứng tỏ rằng:
a) S >48 b) S < 49
So thú bi cháy con gì ra đau tiên:
\(CMR:\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+.....+\frac{2499}{2500}>48\left(49>A>48\right)\)
1.cho A=3/4+8/9+15/16+...+2499/2500
CMR:48<A<49
2.Tìm GTNN của biểu thức sau: E=3x4+ |5y-1| + |5y-2|
1.cho A=3/4+8/9+15/16+...+2499/2500
CMR:48<A<49
2.Tìm GTNN của biểu thức sau: E=3x4+ |5y-1| + |5y-2|
Bài 2:
So sánh A=\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}\)với 48 và 49
So sánh
A=\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}\)
với 48 và 49
Cho C = 2 + 3/4 + 8/9 + 15/16 + ... + 2499/2500
CMR C > 50
\(C=1+1+\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{2500}\right)\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{2500}\right)\)
51 số hạng 49 số hạng
= \(51-\left(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{50.50}\right)\)
\(>51-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{50.51}\right)=51-\left(\frac{1}{2}-\frac{1}{51}\right)=51-\frac{1}{2}+\frac{1}{51}\)
\(=50,5+\frac{1}{51}>50\left(đpcm\right)\)
Vậy C > 50