cho x>0 thỏa mãn X^2+1/X^2=14.Tính giá trị của biểu thức x^5+1/x^5
1; Tập hợp các giá trị của x thoả mãn:/x+3/-5=0
2;giá trị nguyên dương của x thỏa mãn :/x-1/=-[x-1] là?
3;cho 2 số nguyên x;y thỏa mãn :/x/+/y=7,giá trị lớn nhất của x.y là?
4;giá trị lớn nhất của biểu thức : -3-/x+2/ là?
5;GTLN của biểu thức ; 15-[x-2]^2 là ?
giúp mình với . mình đang cần gấp nhé!
Cho \(x>0\) thỏa mãn điều kiện \(x^2+\frac{1}{x^2}=14\) . Tính giá trị biểu thức \(x^5+\frac{1}{x^5}\)
Ta có: \(x^2+\frac{1}{x^2}=14\)(1)
=> \(x^2+\frac{1}{x^2}+2=16\)
<=> \(\left(x+\frac{1}{x}\right)^2=16\)
<=> \(x+\frac{1}{x}=4\) (Vì x > 0)
<=> \(\left(x+\frac{1}{x}\right)^3=4^3\)
<=> \(x^3+3x+\frac{3}{x}+\frac{1}{x^3}=64\)
<=> \(x^3+\frac{1}{x^3}=64-3\left(x+\frac{1}{x}\right)\)
<=> \(x^3+\frac{1}{x^3}=64-3.4=52\) (2)
Từ (1) và (2) nhân vế theo vế:
\(\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=14.52=728\)
=> \(x^5+\frac{1}{x}+x+\frac{1}{x^5}=728\)
=> \(x^5+\frac{1}{x^5}=728-4=724\)
Cho x>0 thỏa mãn \(x^2+\frac{1}{x^2}=7\).Tính giá trị của biểu thức \(B=x^5+\frac{1}{x^5}\)
\(\left(x+\frac{1}{x}\right)^2=x^2+\frac{1}{x^2}+2=7+2=9\)
\(\Rightarrow x+\frac{1}{x}=3\) (vì x > 0)
Mặt khác, \(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)^3-3.x.\frac{1}{x}\left(x+\frac{1}{x}\right)=3^3-3.3=18\)
Ta có: \(B=x^5+\frac{1}{x^5}=\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)
\(=7.18-3=123\)
Vậy B = 123
Chúc bạn học tốt.
cho x là số thực thỏa mãn x2-4x+1=0.tính giá trị biểu thức A=x5+1/x5
Cho hai biểu thức:
A = \(\dfrac{x+6}{5-x}\) và B = \(\dfrac{x+5}{2x}+\dfrac{x-6}{x-5}+\dfrac{x^2-8x-25}{2x^2-10x}\)
a) Tính giá trị biểu thức A với x thỏa mãn \(x^2+5x=0\)
b) Chứng minh: B = \(\dfrac{x-2}{x-5}\)
c) Tìm giá trị của x để \(B-A=0\)
d) Tìm tất cả giá trị nguyên của x để biểu thức A có giá trị nguyên.
1 Cho x,y là các số thỏa mãn I x-3 I + (y+4)^2 = 0
2 Số các giá trị nguyên của x thỏa mãn
2(IxI- 5) ( x^2 -9) =0
3 Nếu 1/2 của a bằng 2b thì 9/8a = kb . Vậy kb =
4 Số giá trị của x thỏa mãn
x^2 +7x +12 = 0
5 Biết (a+1) (b+1) = 551 khi đó giá trị của biểu thức ab+a+b = ?
Cho x>0 thỏa mãn x2+\(\frac{1}{x^2}\)=23.Tính giá trị biểu thức : x5+\(\frac{1}{x^5}\).
ta có \(x^2+\frac{1}{x^2}\)
=\(\left(x+\frac{1}{x}\right)^2-2x\frac{1}{x}=\left(x+\frac{1}{x}\right)^2-2\)
=> \(\left(x+\frac{1}{x}\right)^2=25.vì\)\(x>0\Rightarrow x+\frac{1}{x}>0\Rightarrow x+\frac{1}{x}=5\)
\(\left(x+\frac{1}{x}\right)^3=x^3+\frac{1}{x^3}+3x+\frac{3}{x}=x^3+\frac{1}{x^3}+15\)
\(\Rightarrow x^3+\frac{1}{x^3}=5^3+15=110\)
\(\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=x^5+\frac{1}{x^5}+x+\frac{1}{x}=x^5+\frac{1}{x^5}+5\)
\(\Rightarrow x^5+\frac{1}{x^5}=23\cdot110-5=2525\)
Vậy...
cho biểu thức P=[x mũ 2+9/x mũ 2+5x+x-1/x-x/x+5][1+2/x]
a rút gọn biểu thức P
b tính giá trị của P,biết x thỏa mãn [x+2][3x-2]=0
giúp mình với nhé
a, \(P=\left(\frac{x^2+9}{x^2+5x}+\frac{x-1}{x}-\frac{x}{x+5}\right)\left(1+\frac{2}{x}\right)\)đk : x khác 0 ; -5
\(=\left(\frac{x^2+9+x^2+4x-5-x^2}{x\left(x+5\right)}\right)\left(\frac{x+2}{x}\right)\)
\(=\frac{x^2+4x+4}{x\left(x+5\right)}\left(\frac{x+2}{x}\right)=\frac{\left(x+2\right)^3}{x^2\left(x+5\right)}\)
b, Ta có \(\left(x+2\right)\left(3x-2\right)=0\Leftrightarrow x=-2;x=\frac{2}{3}\)
Với x = -2 => P = 0
Với x = 2/3 => \(P=\frac{\left(\frac{2}{3}+2\right)^3}{\frac{4}{9}\left(\frac{2}{3}+5\right)}=\frac{128}{17}\)
-mình nghĩ bạn nên đặt dấu chia giữa 2 đa thức kia thì kq sẽ đẹp hơn
1.Giá trị lớn nhất của biểu thức B = 7 - /x/^3 - /x/^2 -/x/
tập hợp các giá trị của x thỏa mãn ( x - 2 ) . (2x + 14 ) = 0
1) 7-x3-x2-x=7-x(x2-x-1) vì x(x2-x-1) phải bé hơn 7 nên Giá trị lớn nhất của biểu thức B là 7
2) (x-2)(2x+14)=0 ta đc x-2=0 và 2x+14=0
*Xét trường hớp 1: x-2=0 =>x=2
*Xét trường hợp 2: 2x+14=0 =>2x=-14 =>x= -7
Vậy x={2;-7}