Tìm ba số nguyên dương biết rằng tổng của ba số ấy bằng nửa tích của hai số
Tìm ba số nguyên dương biết rằng tổng của ba số ấy bằng nửa tích của chúng.
1;2;3 đó bạn
mink nha
6,4,1 các cậu ạ mik cũng ko chắc nữa
tìm ba số nguyên dương biết rằng tổng của ba số ấy bằng nửa tích của chúng
Ai đúng cho 3 tick
Gọi 3 số nguyên dương cần tìm là a, b, c
Ta có a + b + c = abc/2
Giả sử a≤b≤ca≤b≤c thì
Do đó \(\frac{abc}{2}\le3c\) hay
Có các trường hợp sau
1, ab = 6 suy ra c = 3,5 ( loại )
2, ab = 5 Suy ra a = 1, b = 5 , c = 4 ( Loại)
3, ab = 4 Suy ra a = 1, b = 4 , c = 5( thỏa mãn)
a =2, b = 2, c = 4 (Thỏa mãn)
4, ab = 3 Suy ra a = 1, b = 3, c = 8 ( thỏa mãn)
5, ab = 2..........................................( Không thỏa mãn)
6, ab = 1 ..........................................( Không thỏa mãn
Vậy bộ ba số cần tìm là 1, 4, 5 hoặc 1, 3, 8
học tốt
Mà bn ơi làm s suy ra đc c vậy
Chứng minh các số a; b; c nhất định phải là các số nguyên dương phân biệt.
Ta có a. b. c= a + b + c.
Giả sử a = b = c ta có a∧2 = 3. Trình bày không cho nghiệm nguyên dương, nên a, b, c là 3 số nguyên dương phân biệt .
Tìm các số nguyên dương:
Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c= a.b.c < 3a. Hay tích b.c < 3. Vì a; b; c là các số nguyên dương; b.c < 3. Do b; c nguyên dướng nên tích b, c nguyên dương hay b.c = 1 hoặc b.c = 2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. (b khác 2 thì tích b.c > 3 là vô lý).
Vậy ta có 1 + 2 + a = 1.2.a hay 3 + a= 2a => a = 3.
Kết luận: Số cần tìm là 1; 2; 3.
Tìm ba số nguyên dương biết rằng tổng của 3 số ấy bằng tích của chúng
Tìm ba số nguyên dương biết rằng tổng của 3 số ấy bằng tích của chúng
Tìm ba số nguyên dương biết rằng tổng của 3 số ấy bằng tích của chúng
nghĩ...... ra...... 1 ...số.... thôi....số.....đó....là................0 vì 03 bằng 0 mà :D :P
tìm 3 số nguyên dương biết rằng tổng của 3 số ấy bằng nửa tích của chúng ?
Tìm 3 số nguyên dương biết rằng tổng của 3 số ấy bằng nửa tích của chúng
Gọi 3 số nguyên dương cần tìm là a, b, c
Ta có \(a+b+c=\frac{abc}{2}\)
Giả sử \(a\le b\le c\) thì
Do đó \(\frac{abc}{2}\le3c\) hay
Có các trường hợp sau
1, ab = 6 suy ra c = 3,5 ( loại )
2, ab = 5 Suy ra a = 1, b = 5 , c = 4 ( Loại )
3, ab = 4 Suy ra a = 1, b = 4 , c = 5( thỏa mãn )
a = 2, b = 2, c = 4 (Thỏa mãn )
4, ab = 3 Suy ra a = 1, b = 3, c = 8 ( thỏa mãn )
5, ab = 2..........................................( Không thỏa mãn )
6, ab = 1 ..........................................( Không thỏa mãn )
Vậy bộ ba số cần tìm là 1, 4, 5 hoặc 1, 3, 8
tìm chữ số tận cùng của số P=1414 mũ 14+ 99 mũ 9+ 23 mũ 4
tìm 3 số nguyên dương biết rằng tổng của ba số đó bằng một nửa tích của chúng
Tìm 3 số nguyên dương biết tổng ba số đó bằng một nửa tích của chúng
Chứng minh các số a; b; c nhất định phải là các số nguyên dương phân biệt.
Ta có a. b. c= a + b + c.
Giả sử a = b = c ta có a∧2 = 3. Trình bày không cho nghiệm nguyên dương, nên a, b, c là 3 số nguyên dương phân biệt .
Tìm các số nguyên dương:
Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c= a.b.c < 3a. Hay tích b.c < 3. Vì a; b; c là các số nguyên dương; b.c < 3. Do b; c nguyên dướng nên tích b, c nguyên dương hay b.c = 1 hoặc b.c = 2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. (b khác 2 thì tích b.c > 3 là vô lý).
Vậy ta có 1 + 2 + a = 1.2.a hay 3 + a= 2a => a = 3.
Kết luận: Số cần tìm là 1; 2; 3.