Những câu hỏi liên quan
Neo Amazon
Xem chi tiết
Nguyễn Phương Uyên
8 tháng 5 2018 lúc 9:11

\(A=\frac{\frac{2017}{1}+\frac{2016}{2}+\frac{2015}{3}+...+\frac{1}{2017}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}\)

\(A=\frac{1+\left(1+\frac{2016}{2}\right)+\left(1+\frac{2015}{3}\right)+...+\left(1+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}\)

\(A=\frac{\frac{2018}{2018}+\frac{2018}{2}+\frac{2018}{3}+...+\frac{2018}{2017}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}\)

\(A=\frac{2018\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2018}}\)

\(A=2018\)

Phùng Minh Quân
8 tháng 5 2018 lúc 9:10

Ta có : 

\(A=\frac{\frac{2017}{1}+\frac{2016}{2}+\frac{2015}{3}+...+\frac{1}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}\)

\(A=\frac{\left(\frac{2017}{1}-1-1-...-1\right)+\left(\frac{2016}{2}+1\right)+\left(\frac{2015}{3}+1\right)+...+\left(\frac{1}{2017}+1\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}\)

\(A=\frac{\frac{2018}{2018}+\frac{2018}{2}+\frac{2018}{3}+...+\frac{2018}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}\)

\(A=\frac{2018\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}}\)

\(A=2018\)

Vậy \(A=2018\)

Chúc bạn học tốt ~ 

Seulgi
3 tháng 5 2019 lúc 14:23

mình giỏi vl vậy >:

Nguyễn Hữu Triết
Xem chi tiết
Binh Ngo
6 tháng 5 2017 lúc 20:24

\(2C=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2016}}\)

\(2C-C=2+1+....+\frac{1}{2^{2016}}-\left(1+\frac{1}{2}+....+\frac{1}{2^{2017}}\right)\)

\(C\left(2-1\right)=2+1+....+\frac{1}{2^{2016}}-1-\frac{1}{2}-...-\frac{1}{2^{2017}}\)

\(C=2-\frac{1}{2^{2017}}=\frac{2^{2018}}{2^{2017}}-\frac{1}{2^{2017}}=\frac{2^{2018}-1}{2^{2017}}\)

ok men nha dug 100%

Co cung ko cai dc

Thanh Tùng DZ
6 tháng 5 2017 lúc 20:34

\(C=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\)

\(2C=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)

\(2C-C=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)

\(C=2-\frac{1}{2^{2016}}\)

Nguyễn Phạm Hồng Anh
4 tháng 4 2019 lúc 12:11

\(C=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}+\frac{1}{2^{2017}}\)

\(\Rightarrow\) \(2C=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}+\frac{1}{2^{2016}}\)

\(\Rightarrow\) \(C=2-\frac{1}{2^{2017}}=\frac{2^{2018}}{2^{2017}}-\frac{1}{2^{2017}}=\frac{2^{2018}-1}{2^{2017}}\)

Study well ! >_<

Trương Khánh Hoàng
Xem chi tiết
kim tae hyung
Xem chi tiết
GOODBYE!
14 tháng 3 2019 lúc 20:26

KQ:\(\frac{1}{5}\)

kim tae hyung
14 tháng 3 2019 lúc 20:30

cho tớ xin cách lm

Trần Cao Vỹ Lượng
Xem chi tiết
Wall HaiAnh
8 tháng 4 2018 lúc 20:41

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

\(\Rightarrow A=1+\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

Đặt \(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

\(2B=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2012}}\right)\)

\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)

\(2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

\(B=1-\frac{1}{2^{2012}}\)

\(\Rightarrow A=1+\left(1-\frac{1}{2^{2012}}\right)\)

\(\Rightarrow A=2-\frac{1}{2^{2012}}\)

Takitori
Xem chi tiết
Nguyễn Bảo Ngọc
11 tháng 5 2019 lúc 14:22

đúng rùi đó

zZz Cool Kid_new zZz
11 tháng 5 2019 lúc 15:52

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2012}}\)

\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2011}}\)

\(A=2-\frac{1}{2^{2012}}\)

sakủa
Xem chi tiết
Kaori Miyazono
13 tháng 4 2017 lúc 11:58

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

Nên \(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)

Suy ra \(2A-A=2-\frac{1}{2^{2012}}\)hay \(A=2-\frac{1}{2^{2012}}\)

        Vậy \(A=2-\frac{1}{2^{2012}}\)

Aquarius Love
13 tháng 4 2017 lúc 12:01

\(\frac{1}{2}A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\)

=>\(A-\frac{1}{2}A=\left(1+\frac{1}{2}+..+\frac{1}{2^{2012}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\right)\)

=>\(\frac{1}{2}A=1-\frac{1}{2^{2013}}\)

=>\(A=2-\frac{1}{2^{2012}}\)

Cô mình chữa bài này rồi nên bạn cứ yên tâm

Nguyễn Thị Hương
Xem chi tiết
Kudo Sinichi
Xem chi tiết
Thắng Nguyễn
17 tháng 5 2016 lúc 20:59

\(2A=2\left(1+\frac{1}{2}+...+\frac{1}{2^{2012}}\right)\)

\(2A=2+1+...+\frac{2}{2^{2011}}\)

\(2A-A=\left(2+1+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{2012}}\right)\)

\(A=2-\frac{1}{2^{2012}}\)

l҉o҉n҉g҉ d҉z҉
17 tháng 5 2016 lúc 21:18

Ta có: \(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2012}}\)

=>  \(2A=2\left(1+\frac{1}{2}+...+\frac{1}{2^{2012}}\right)\)

=>  \(2A=2+1+...+\frac{2}{2^{2011}}\)

=> \(2A-A=\left(2+1+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{2012}}\right)\)

=> \(A=2-\frac{1}{2012}\)