\(\frac{n^3+2n}{n^4+3n^2+1}\)p/s tối giản
Tìm n để \(\frac{n^3+2n}{n^4+3n^2+1}\)tối giản
chứng tỏ rằng phân số\(\frac{2n+3}{3n+4}\)là phân số tối giản với V n e N
cho biểu thức
\(s=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
tìm n đế S là phân số tối giản
$s=\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}$
S=$\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}$
2n+1
n−3 +
3n−5
n−3 −
4n−5
n−3
a, tìm n để A là phân số tối giản
b, tìm n để S có giá trị lớn nhất. Tìm giá trị lớn nhất đó
Câu hỏi tương tự Đọc thêm
a, Chứng tỏ với mọi số nguyên n, p/s \(\frac{n^3+2n}{n^4+3n^2+1}\) là tối giản
b, TÌm tất cả giá trị x thuộc Z để phân số: \(\frac{18x+3}{21x+7}\)là phân số tối giản
goi d=UCLN(n3+2n;n4+3n2+1) (d\(\in\)N*)
\(\Rightarrow\)n3+2n va n4+3n2 +1 chia het cho d \(\Rightarrow\)n4+3n2+1-n(n3+2n) =n2+1 chia het cho d
n3+2n -n(n2+1)=n chia het cho d\(\Rightarrow\)n2 +1-n.n==1 chia het cho d\(\Rightarrow\)d \(\in\)U(1)ma d lon nhat , d\(\in\)N* nen d=1
do đó phân số trên là tối giản
Chứng tỏ:
\(\frac{n^3+2n}{n^4+3n^2+1}\)là phân số tối giản.
cmr các phân số sau tối giản\(\frac{2n+1}{2n^2+2n}\)va \(\frac{n^3+3n+1}{7n^3+18n^2-n-2}\)
Chứng minh phân số sau tối giản :
\(\frac{n^3+2n}{n^4+3n^2+1}\)( n \(\in\)N )
Gọi d = ƯCLN ( n3 + 2n ; n4 + 3n2 + 1 )
=> n3 + 2n \(⋮\)d ( 1 ) và n4 + 3n2 + 1 \(⋮\)d ( 2 )
Từ ( 1 ) => n . ( n3 + 2n ) \(⋮\)d => n4 + 2n2 \(⋮\)d ( 3 )
Từ ( 2 ) và ( 3 ) => ( n4 + 3n2 + 1 ) - ( n4 + 2n2 ) \(⋮\)d
=> n4 + 3n2 + 1 - n4 - 2n2 \(⋮\)d
=> ( n4 - n4 ) + ( 3n2 - 2n2 ) + 1 \(⋮\)d
=> n2 + 1 \(⋮\)d ( * )
=> n2 . ( n2 + 1 ) \(⋮\)d
=> n4 + n2 \(⋮\)d ( 4 )
Từ ( 3 ) và ( 4 ) => ( n4 + 2n2 ) - ( n4 + 2n ) \(⋮\)d
=> n2 \(⋮\)d ( 5 )
Từ ( * ) và ( 5 ) => ( n2 + 1 ) - n2 \(⋮\)d
=> 1 \(⋮\)d
=> d = 1
Vậy : phân số đã cho tối giản
chứng minh rằng các phân số sau tối giản vs mọi số tự nhiên n:
\(\frac{n^3+2n}{n^4+3n^2+1}\)
Gọi d là ước chung của n^3 + 2n và n^4 + 3n^2 + 1. Ta có:
n^3 + 2n chia hết cho d => n(n^3 + 2n) chia hết cho d => n^4 + 2n^2 chia hết cho d (1)
n^4 + 3n^2 + 1 -(n^4 + 2n^2) = n^2 + 1 chia hết cho d => (n^2 + 1)^2 = n^4 + 2n^2 + 1 chia hết cho d (2)
Từ (1) và (2) suy ra :
(n^4 + 2n^2 + 1)- (n^4 + 2n^2) chia hết cho d => 1 chia hết cho d => d=+-1
Vậy phân số trên tối giản vì mẫu và tử có ước chung là +-1
Phân số trên sẽ tối giản vì không có bất kì các số nào có thể rút gọn với nhau .
Nếu như có thể thì khi ta cộng lại cũng không thể , vì đang rút được ta cộng một vào bất kì ( mẫu / tử ) đều khiến phép tính không thể rút gọn tiếp được nữa .
Vậy không thể rút gọn và phân số này đã tối giản