tinh:\(\frac{3}{10\cdot12}+\frac{3}{12\cdot14}+...+\frac{3}{48\cdot50}\)
\(\frac{3}{10\cdot12}+\frac{3}{12\cdot14}+........+\frac{3}{48\cdot50}\)
3/2.( 2/ 10.12+2/12.14+.....+2/48.50)
3/2.(1/10-1/12+1/12-1/14+....+1/48-1/50)
3/2.(1/10-1/50)
3/2.2/25
3/25
\(\frac{1}{10\cdot11}\)+\(\frac{1}{11\cdot12}\)+\(\frac{1}{12\cdot13}\)+ ......................+\(\frac{1}{49\cdot50}\)
Ta có: \(\frac{1}{10.11}+\frac{1}{11.12}+....+\frac{1}{49.50}\)
\(\Rightarrow\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+....+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{10}-\frac{1}{50}\)
\(=\frac{2}{25}\)
(\(\frac{1}{1\cdot51}\)+\(\frac{1}{2\cdot52}\)+.......+\(\frac{1}{10\cdot60}\))x=(\(\frac{1}{1\cdot11}\)+\(\frac{1}{2\cdot12}\)+........+\(\frac{1}{40\cdot50}\))
\(\frac{3}{2\cdot7}+\frac{3}{7\cdot12}+\frac{3}{12\cdot17}+...+\frac{3}{82\cdot87}\)
Ta có:
\(\frac{3}{2.7}+\frac{3}{7.12}+\frac{3}{12.17}+...+\frac{3}{82.87}\)
\(=\frac{3}{5}.\left(\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}+...+\frac{1}{82}-\frac{1}{87}\right)\)
\(=\frac{3}{5}.\left(\frac{1}{2}-\frac{1}{87}\right)=\frac{3}{5}.\frac{85}{174}=\frac{17}{58}\)
Ta có:
A = \(\frac{3}{2.7}+\frac{3}{7.12}+\frac{3}{12.17}+...+\frac{3}{82.87}\)( dấu chấm là dấu nhân nhá, lên lớp 6 thì bạn sẽ biết )
\(\frac{5}{3}.A=\frac{5}{3}.\left(\frac{3}{2.7}+\frac{3}{7.12}+\frac{3}{12.17}+...+\frac{3}{82.87}\right)\)
\(\frac{5}{3}.A=\frac{5}{2.7}+\frac{5}{7.12}+\frac{5}{12.17}+...+\frac{5}{82.87}\)
\(\frac{5}{3}.A=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}+\frac{1}{12}+\frac{1}{12}-\frac{1}{17}+...+\frac{1}{82}-\frac{1}{87}\)
\(\frac{5}{3}.A=\frac{1}{2}-\frac{1}{87}\)
\(\frac{5}{3}.A=\frac{85}{174}\)
\(A=\frac{85}{174}:\frac{5}{3}=\frac{17}{58}\)
Đ/s : \(\frac{17}{58}\)
Ủng hộ mik nhá !!!
3.1/2.7+3.1/7.12+3.1/12.17+.......+3.1/82.87
= 1/2-1/7+1/7-1/12+1/12-1/17+........+1/83 - 1/87
=1/2-1/87
=85/174
dấu gạch chéo thay cho gạch ngang phân số bạn nhé
CMR: \(\frac{3}{1^2\cdot2^2}+\frac{5}{2^2\cdot3^2}+\frac{7}{3^2\cdot4^2}+...+\frac{97}{48^2\cdot49^2}+\frac{99}{49^2\cdot50^2}< 1\)
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{97}{48^2.49^2}+\frac{99}{49^2.50^2}\)
\(\Leftrightarrow\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{97}{2304.2401}+\frac{99}{2401.2500}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{2304}-\frac{1}{2401}+\frac{1}{2401}-\frac{1}{2500}\)
\(\Leftrightarrow\frac{1}{1}-\frac{1}{2500}=\frac{2499}{2500}< 1\left(đpcm\right)\)
Bài này mình chắc 100%, 1 đúng nha vì ghi cực khổ lắm:
1) Ta có: \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}...+\frac{50-49}{49.50}\)
\(=\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+...+\frac{50}{49.50}-\frac{49}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)
tinh
Tách: 1/1.2=1-1/2; 1/2.3=1/2-1/3; ....; 1/49.50=1/49-1/50
Và rút gọn các số liền kề thì còn lại kết quả
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)
\(=\left(1-\frac{1^1}{2}\right)+\left(\frac{1^1}{2}-\frac{1^1}{3}\right)+\left(\frac{1^1}{3}-\frac{1}{4}^1\right)+...+\left(\frac{1^1}{49}-\frac{1}{50}\right)\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
Tính nhanh: \(\frac{3\cdot15+3\cdot15}{6\cdot50+12\cdot50}\)
\(\frac{45+45}{300+600}\)
\(\frac{90}{900}\)
\(\frac{1}{10}\)
\(B=\frac{48^3\cdot50^5}{64^2\cdot125^2\cdot30^3}\)
\(B=\frac{\left(2^4.3\right)^3.\left(2.5^2\right)^5}{\left(2^6\right)^2.\left(5^3\right)^2.\left(2.3.5\right)^3}\)
\(B=\frac{2^{12}.3^3.2^5.5^{10}}{2^{12}.5^6.2^3.3^3.5^3}\)
\(B=\frac{2^{12}.3^3.2^3.2^2.5^9.5}{2^{12}.5^9.2^3.3^3}\)
\(B=2^2.5=20\)
Vay B = 20