Cho A=\(\frac{1}{11}\)+\(\frac{1}{12}+\frac{1}{13}+...+\frac{1}{40}\). Chứng minh A không thuộc N
Cho A=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{40}\)
Chứng minh A không phải là số tự nhiên
Bài 1:Cho: A=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{40}\)
Chứng minh A không phải là số tự nhiên
Sau khi quy đồng ta thấy mẫu số chứa lũy thừa của 2
Và tử số không chia hết cho 40 ( Dựa theo tính chất lớp 6) >>A không chia hết cho m b không chia hết cho m và c không chia hết cho m =>(a+b+c) ko chia hết cho m
=>=>Dãy số này ko phải là dãy số tự nhiên .
cho \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) không tính tổng S, hãy chứng minh S không phải 1 số tự nhiên
cho \(A=\frac{1}{61}+\frac{1}{62}+\frac{1}{63}+...+\frac{1}{99}+\frac{1}{100}\) . Chứng minh \(A>\frac{9}{20}\)
a,Ta có: \(\frac{3}{10}=\frac{3}{10};\frac{3}{11}< \frac{3}{10};\frac{3}{12}< \frac{3}{10};\frac{3}{13}< \frac{3}{10};\frac{3}{14}< \frac{3}{10}\)
\(\Rightarrow S< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}=\frac{3}{2}=1,5\left(1\right)\)
Lại có: \(\frac{3}{10}>\frac{3}{15};\frac{3}{11}>\frac{3}{15};\frac{3}{12}>\frac{3}{15};\frac{3}{13}>\frac{3}{15};\frac{3}{14}>\frac{3}{15}\)
\(\Rightarrow S>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\left(2\right)\)
Từ (1) và (2) => 1 < S < 1,5
Vậy...
b, \(A=\frac{1}{61}+\frac{1}{62}+...+\frac{1}{100}\)
\(=\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)+\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\)
Ta có: \(\frac{1}{61}>\frac{1}{80};\frac{1}{62}>\frac{1}{80};...;\frac{1}{80}=\frac{1}{80}\)
\(\Rightarrow\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}=\frac{20}{80}=\frac{1}{4}\left(1\right)\)
Lại có: \(\frac{1}{81}>\frac{1}{100};\frac{1}{82}>\frac{1}{100};...;\frac{1}{100}=\frac{1}{100}\)
\(\Rightarrow\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{20}{100}=\frac{1}{5}\left(2\right)\)
Từ (1) và (2) => \(A>\frac{1}{4}+\frac{1}{5}=\frac{9}{20}\)
Vậy...
a) Cho \(C=\) \(\frac{1}{11}\)+\(\frac{1}{12}\)+\(\frac{1}{13}\)+. . .+\(\frac{1}{19}\)
Chứng minh rằng C không phải là số nguyên
b) Cho \(D=2\cdot\)\([\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n\left(n+2\right)}]\)\(với\)\(n\inℕ^∗\)
Chứng minh rằng D không phải là số nguyên
c) Cho \(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Chứng minh rằng E không phải là số nguyên
b,\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n.\left(n+2\right)}\right)\)
\(\Rightarrow D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)
\(\Rightarrow D=1-\frac{1}{n+2}=\frac{n}{n+2}< \frac{n+2}{n+2}=1\left(1\right)\)
\(\Rightarrow D=\frac{n}{n+2}>0\left(2\right)\)
Từ (1);(2)\(\Rightarrow0< D< 1\)
\(\Rightarrowđpcm\)
a,\(C>0\)
\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< 9;\frac{1}{11}< 1\)
\(\Rightarrow0< A< 1\)
\(\Rightarrow A\notinℤ\)
c,\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Ta quy đồng 3 số đầu
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{6.2}{12}=1\)
\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{6.2}{6}=2\)
\(1< E< 2\)
\(E\notinℤ\)
Cho A = \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\)Chứng minh rằng 0,2<A<0,4
a)Cho C=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{18}+\frac{1}{19}\)
chứng minh rằng C khg phải là số nguyên.
Bn tham khảo nhé:
Câu hỏi của Hoàng Phú - Toán lớp 7 - Học toán với OnlineMath
~ rất vui vì giúp đc bn ~
\(Cho\:A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}\)
a) Chứng minh A lớn hơn hoặc bằng \(\frac{4}{3}\)
b) Chứng minh A bé hơn hoặc bằng 2,5
Chứng minh rằng : \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{19}\) không phải là số nguyên.
Ta có: \(\frac{1}{10}>\frac{1}{11};\frac{1}{10}>\frac{1}{12};....;\frac{1}{10}>\frac{1}{19}\)
=>\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< \frac{1}{10}.9\)
\(=\frac{9}{10}< 1\)
Mà \(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}>0\)
=>\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}\) không là số tự nhiên (đpcm)
A=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{70}\)
Chứng minh rằng:\(\frac{4}{3}< A< 35\)