Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đức Nguyễn Ngọc
Xem chi tiết
Nguyễn Duy Long
21 tháng 5 2016 lúc 9:15

A=x2+2x+2=x2+2.x.1+12+1=(x+1)2+1

\(\left(x+1\right)^2\ge0\)=>(x+1)2+1>0

                                =>     A      >0 =>A vô nghiệm (đpcm)

Đức Nguyễn Ngọc
21 tháng 5 2016 lúc 9:15

Ta có: A = x^2 + 2x +2

              = x^ 2 +x + x +1 + 1

              = (x^2 + x) + (x+1) + 1

              = x(x+1) + (x+1) + 1

              = (x+1)(x+1) + 1

              = (x+1)^2 +1

Vì (x+1)^2 \(\ge\) 0 (với mọi x) nên (x+1)^2 + 1 \(\ge\)1 > 0 (với mọi x)

Vậy đa thức A ko có nghiệm

TFboys_Lê Phương Thảo
21 tháng 5 2016 lúc 9:15

Ta có : \(x^2\ge0\)                (1)

           \(2x\ge0\)                (2)

Và :      \(2>0\)                  (3)

Từ (1)(2) và (3) ta có thể suy ra rằng :\(x^2+2x+2\ge0\)

Dĩ nhiên rằng đa thức \(x^2+2x+2#0\)

Vậy : đa thức \(A=x^2+2x+2\)không có nghiệm (đpcm)

Trang Huyền
Xem chi tiết
Edogawa Conan
1 tháng 8 2021 lúc 16:00

Để phương trình có nghiệm thì f(x)=0

    ⇔x2-2x+2016=0

    ⇔ (x-1)2+2015=0

    ⇔ (x-1)2=-2015 (vô lí do (x-1)2≥0)

Vậy,phương trình vô nghiệm

Trần Phương Linh
1 tháng 8 2021 lúc 16:01

F(x)=x2−2x+2016F(x)

F(x)=x2−2x+1+2015

F(x)=x2−x−x+1+2015

=x(x−1)−(x−1)+2015

=(x−1)^2+2015

Vì (x−1)2+2015≥2015>0 với mọi x ∈ R

=>F(x) vô nghiệm  (đpcm)

Ba Dấu Hỏi Chấm
Xem chi tiết
Trần Thị Minh Ngọc
27 tháng 3 2016 lúc 20:44

x2+2x+2=(x2+2x+1)+1=(x+1)2+1>0 với mọi x

suy ra đa thức đã cho vô nghiệm

Nguyen Tien Dat
27 tháng 3 2016 lúc 20:31

​tinh denta phay = 1^2 - 4.1.2 = -7 . vi denta < 0 nen pt vo nghiem

Nguyễn Võ Anh Nguyên
27 tháng 3 2016 lúc 20:37

Ta có :x^2+2x+2

=(x^2+2x+1)+1

=(x+1)^2+1

Vì biểu thức (x+1)^2 lớn hơn hoặc bằng 0 nên đa thức trên có GTNN=1

Vậy đa thức trên không có nghiệm 

PhamHaiDang
Xem chi tiết
yen dang
10 tháng 5 2019 lúc 19:33

X^2+2x+2

=x^2+x+x+1+1

=x(x+1) +(x+1)+1

=(x+1)(x+1)+1

=(x+1)^2+1

có (x+1)^2>=0

=>(x+1)^2+1>=1   (đpcm)

nhớ t nhé

Nguyễn Trung Kiên
10 tháng 5 2019 lúc 19:34

Mik hok lớp 7 nên chắc chắn là đúng

Ta có x^2+2x+2

= x.x+x +(x +1)+1

= x.x + x.1 + (x +1)+1 ( nhân 1 vào nên ko thay đổi)

= x . (x +1) + (x+1) +1

= x . (x +1) + (x+1) .1 + 1 ( nhân 1 vào nên ko thay đổi)

= (x+1) . (x+1) +1  (phân phối)

= (x+1)^2 +1

Xét :

(x+1)^2 luôn luôn lớn hơn hoặc bằng 0

=> (x+1)^2 +1 luôn lớn hơn 0

=> x^2 + 2x +2 không có nghiệm

Vậy x^2 + 2x +2 không có nghiệm

zZz Cool Kid_new zZz
11 tháng 5 2019 lúc 11:57

\(x^2+2x+2=0\)

\(\Leftrightarrow\left(x^2+2x+1\right)+1=0\)

\(\Leftrightarrow\left(x+1\right)^2+1=0\)(vô lý)

neko mako
Xem chi tiết
TV Cuber
17 tháng 4 2022 lúc 20:44

ta có:\(x\ge0\Rightarrow2x^2\ge0\)

\(\Rightarrow2x^2+2x\ge0\)

mà 10 > 0

\(=>2x^2+2x+10>0\)

hayf(x) ko có nghiệm

Lê Huyền My
Xem chi tiết
Nguyễn Anh Vương
14 tháng 5 2015 lúc 6:38

Dễ mà áp dụng tính chất này mà làm nè:

  Câu a với câu b: (A+B)2=A2+2AB+B2

  Câu c: (A-B)2=A2-2AB+B2

 

Trần Ngọc Hiếu
14 tháng 5 2015 lúc 7:10

a. \(x^2+2x+2\)

\(=x^2+x+x+1+1\)

\(=\left(x^2+x\right)+\left(x+1\right)+1\)

\(=x\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(x+1\right)+1\)

\(=\left(x+1\right)^2+1>0+1>0\)

Vậy: Đa thức trên vô nghiệm

b. \(x^2-2x+5\)

\(=x^2-x-x+1+4\)

\(=\left(x^2-x\right)-\left(x-1\right)+4\)

\(=x\left(x-1\right)-\left(x-1\right)+4\)

\(=\left(x-1\right)\left(x-1\right)+4\)

\(=\left(x-1\right)^2+4>0+4>0\)

Vậy: Đa thức trên vô nghiệm

c.\(x^2-4x+5\)

\(=x^2-2x-2x+4+1\)

\(=\left(x^2-2x\right)-\left(2x-4\right)+1\)

\(=x\left(x-2\right)-2\left(x-2\right)+1\)

\(=\left(x-2\right)\left(x-2\right)+1\)

\(=\left(x-2\right)^2+1>0+1>0\)

Vậy: Đa thức trên vô nghiệm

Tuấn Anh Nguyễn
23 tháng 4 2017 lúc 16:49

Dùng 2 hằng đẳng thức đáng nhớ đầu tiên để áp dụng tính nhẩm nhé

Khánh Nguyễn
Xem chi tiết
FUCK
Xem chi tiết
Mai Thanh Tâm
24 tháng 4 2016 lúc 8:02

Giả sử đa thức P(x) tồn tại một nghiệm n nào đó thỏa mãn ( n là số thực)

Khi đó: P(x) = x2 -2x + 2=0

           x.x- x-x +2=0

          x(x-1) - (x-1) +1 = 0

           (x-1)(x-1) = -1

=> (x-1)2 = -1 mà (x-1)2 luôn  \(\ge\) 0 với mọi x (vô lí)

Vậy điều giả sử là sai, đa thức P(x) vô nghiệm

Nguyễn Anh Thư
24 tháng 4 2016 lúc 8:06

vô nghiệm nha

Hồng Trà Nhi
24 tháng 4 2016 lúc 8:27

p(x)= x^2-2x+2

     = x^2-x-x+1+1

     =(x^2-x)-(x-1)+1

     =x(x-1)-(x-1).1+1

     =(x-1)^2+1>0+1>0

vây...

Nguyễn Đức Thành
Xem chi tiết
Lê Tài Bảo Châu
2 tháng 5 2019 lúc 20:16

Câu 1 :

 Ta có: \(f\left(x\right)=0\Leftrightarrow x^2+2x-3=0\)

                               \(\Leftrightarrow\left(x+1\right)^2-4=0\)

                               \(\Leftrightarrow\left(x+1\right)^2=4\)

                               \(\Leftrightarrow\orbr{\begin{cases}x+1=4\\x+1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)

Vậy \(x\in\left\{-5;3\right\}\)là nghiệm của đa thức f(x)

Câu 2 :

\(q\left(x\right)=x^2-10x+29\)

            \(=\left(x-5\right)^2+4\)

Ta có: \(\left(x-5\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-5\right)^2+4\ge4\forall x\)

Vậy đa thức trên ko có nghiệm

Đỗ Thanh Tùng
2 tháng 5 2019 lúc 20:23

dễ mà

câu 1

f(x)=x^2+2x-3

ta có f(x)=0

suy ra x^2+2x-3=0

tương đương:x^2-x+3x-3=0

tương đương:x(x-1)+3(x-1)=0

tương đương: (x-1)(x+3)=0

tương đương: x-1=0                  x=1

                        x+3=0                 x=-3

vậy đa thức f(x) có hai nghiệm là 1 và -3

câu 2: x^2-10x+29

tương đương: x^2-5x-5x+25+4

tương đương: x(x-5)-5(x-5)+4

tương đương: (x-5)(x-5)+4

tương đương: (x-5)^2+4

vì (x-5)^2> hoặc bằng 0 với mọi x

4>0 

suy ra x^2-10x+29 vô nghiệm

Nguyễn Đức Thành
2 tháng 5 2019 lúc 20:31

3 k nha bạn tốt quá mình đag cần gấp :)