Tính giá trị biểu thức sau: A= 1/1.3+1/3.5+1/5.7+1/7.9+...+1/97.99
tính giá trị biểu thức sau:A=1/1.3+1/3.5+1/5.7+1/7.9+...+1/97.99
A= \(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+\(\dfrac{1}{7.9}\)+...+\(\dfrac{1}{97.99}\)
2A= 1 - \(\dfrac{1}{3}\)+\(\dfrac{1}{3}\) - \(\dfrac{1}{5}\)+\(\dfrac{1}{5}\) - \(\dfrac{1}{7}\)+\(\dfrac{1}{7}\) - \(\dfrac{1}{9}\)+...+\(\dfrac{1}{97}\)-\(\dfrac{1}{99}\)
2A= 1-\(\dfrac{1}{99}\)
2A= \(\dfrac{98}{99}\)
A= \(\dfrac{98}{99}\) : 2
A=\(\dfrac{49}{99}\)
tính giá trị biểu thức
B=1.3+3.5+5.7+7.9+...+97.99
Bạn tham khảo nhé!
Ta có: A = 1.3 + 3.5 + 5.7 +…+ 97.99 + 99.101
A = 1.(1 + 2) + 3.(3 + 2) + 5.(5 + 2) + … + 97.(97 + 2) + 99.(99 + 2)
A = (12 + 32 + 52 + … + 972 + 992) + 2.(1 + 3 + 5 + … + 97 + 99).
Đặt B = 12 + 32 + 52 + … + 992
=> B = (12 + 22 + 32 + 42 + … + 1002) – 22.(12 + 22 + 32 + 42 + … + 502)
Tính dãy tổng quát C = 12 + 22 + 32 + … + n2
C = 1.(0 + 1) + 2.(1 + 1) + 3.(2 + 1) + … + n.[(n – 1) + 1]
C = [1.2 + 2.3 + … + (n – 1).n] + (1 + 2 + 3 + … + n)
C = = n.(n + 1).[(n – 1) : 3 + 1 : 2] = n.(n + 1).(2n + 1) : 6
Áp dụng vào B ta được:
B = 100.101.201 : 6 – 4.50.51.101 : 6 = 166650
=> A = 166650 + 2.(1 + 99).50 : 2
=> A = 166650 + 5000 = 172650.
Đ/s: A = 172650.
Tính giá trị cảu biểu thức A=1/1.3+1/3.5+1/5.7+1/7.9+...+1/2017.2019
A = 1/1.3 + 1/3.5 + 1/5.7 + ... + 1/2017.2019
A = 1/2 (1 - 1/3 + 1/3 - 1/5 + 1/5 - ... - 1/2019)
A = 1/2 (1 - 1/2019)
A = 1/2 . 2018/2019
A = 1009/2019
@Cỏ
\(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{2017\cdot2019}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2019}\right)=\frac{1}{2}\cdot\frac{2018}{2019}\)
\(=\frac{1009}{2019}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2017.2019}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2019}\right)=\frac{1}{2}.\frac{2018}{2019}=\frac{1009}{2019}\)
Tính giá trị biểu thức:
1/ 1.3 + 1/2.4 + 1/3.5 + 1/4.6 + 1/5.7 + 1/6.8 + 1/7.9 + 1/8.10
Đặt \(A=\frac{1}{1.3}+\frac{1}{2.4}+...+\frac{1}{8.10}\)
\(2A=\frac{2}{1.3}+\frac{2}{2.4}+...+\frac{2}{8.10}\)
\(2A=1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{10}\)
\(2A=1-\frac{1}{10}\)
\(2A=\frac{9}{10}\)
\(A=\frac{9}{10}:2=\frac{9}{20}\)
=\(\frac{1}{2}\left(\frac{2}{1.3}+...+\frac{2}{8.10}\right)\)
=\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}...+\frac{1}{8}-\frac{1}{10}\right)\)
( chắc chắn có số trái dấu ở phía sau, nên còn lại như sau)
=\(\frac{1}{2}\left(1-\frac{1}{10}\right)=\frac{1}{2}.\frac{9}{10}=\frac{9}{20}\)
1,Tính giá trị biểu thức
Q= 1.3+3.5+5.7+7.9+...+1999.2001
6Q = 1.3.6 + 3.5.(7-1) + 5.7.(9-3) + ... + 1999.2001.(2003-1997)
6Q = 18 + 3.5.7 - 1.3.5 + 5.7.9 - 3.5.7 + ... + 1999.2001.2003 - 1997.1999.2001
6Q = (18 + 3.5.7 + 5.7.9 + ... + 1999.2001.2003) - (1.3.5 + 3.5.7 + ... + 1997.1999.2001)
6Q = 18 + 1999.2001.2003 - 1.3.5
6Q = 18 + 1999.2001.2003 - 15
6Q = 3 + 8011997997
6Q = 8011998000
Q = 1335333000
tính giá trị của biểu thức
a) A=\(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + \(\frac{1}{4.5}\) + ...+\(\frac{1}{99.100}\)
b) B= \(\frac{2}{1.3}\)+\(\frac{2}{3.5}\) + \(\frac{2}{5.7}\)+\(\frac{2}{7.9}\) +...+\(\frac{2}{97.99}\)
a) \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
b) \(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=2.\left(1-\frac{1}{99}\right)\)
\(=2.\frac{98}{99}\)
\(=\frac{196}{99}=1\frac{97}{99}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(B=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\)
\(=1-\frac{1}{99}\)
\(=\frac{98}{99}\)
A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}\)
=>\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
=>\(\frac{1}{1}-\frac{1}{100}\)
=>\(\frac{99}{100}\)
B=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{97.99}\)
=>\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{97}-\frac{1}{99}\)
=>\(\frac{1}{1}-\frac{1}{99}\)
=>\(\frac{98}{99}\)
Tính giá trị biêut hức;B=2/1.3-4/3.5+6/5.7-8/7.9+...-96/95.97+98/97.99
1) tính giá trị biểu thức : A=\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{2017.2019}\)
2) tìm các chữ số a,b để phân số \(\dfrac{ab}{a+b}\)có giá trị nhỏ nhất (với ab là số tự nhiên có 2 chữ số
mik cần gấp
Tính giá trị của biểu thức: 1.3 + 3.5 + 5.7 + 7.9 + … + 652665.652667
Chào Shanks :) Cô giải như sau:
Đặt \(A=1.3+3.5+5.7+...+652665.652667\)
\(\Rightarrow6A=1.3.6+3.5.6+5.7.6+...+652665.652667.6\)
\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+652665.652667\left(652669-652663\right)\)
\(=1.3.5+3+3.5.7-1.3.5+5.7.9-3.5.7+...+\)
\(...+652665.652667.652669-652663.652665.652667\)
\(=3+652665.652667.652668\)
Vậy \(A=\frac{3+652665.652667.652668}{6}\)
Bài này cho số to quá. Cách làm tổng quát dạng này là ta nhân biểu thức cần tính với 3 lần khoảng cách giữa các số để tạo ra các số đối để triệt tiêu dần cho nhau.