Cho S= 1/31 + 1/32 + 1/33 +....+ 1/59 + 1/60. CMR 3/5<S<4/5
cho S = 1/31+1/32+1/33+...+1/59+1/60. cmr 3/4<S<4/5
Cho S=1/31+1/32+1/33+...+1/59+1/60 Chứng minh 3/5<S<4/5
Cho S=1/31+1/32+1/33+.........+1/59+1/60. C/m 3/5<S<4/5
Cho S=1/31+1/32+...+1/59+1/60. CMR 3/5<S<4/5
giúp mình nhé. ai nhanh mình tick cho
cho s=1/31+1/32+1/33+...+1/59+1/60
chung minh rang : 3/5<s<4/5
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)
Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6
S > 1/4 + 1/5 + 1/6.
Trong khi đó (1/4 + 1/5 + 1/6) > 3/5
=>S > 3/5 (1)
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)
=> S < 4/5 (2)
Từ (1) và (2) => 3/5 <S<4/5
CMR: 31/2*32/2*33/2*...*60/2=1*3*5*...*59
Cho S=1/31+1/32+1/33+...+1/59+1/60 Chứng minh
3/5<S<4/5
S=0,684883282
3/5=0,6
4/5=0,8
tính S = tính bằng cách ấn ( máy tinh casio) shift + log
Cho S = 1/31+1/32+1/33+..............+1/60. CMR: 3/5 < S < 4/5
Cho S=1/31+1/32+1/33+.........+1/60. CMR:3/5<S<4/5
Lời giải:
$S=(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40})+(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50})+(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60})$
$> \frac{10}{40}+\frac{10}{50}+\frac{10}{60}=\frac{37}{60}> \frac{36}{60}=\frac{3}{5}$
Mặt khác:
$S=(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40})+(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50})+(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60})$
$< \frac{10}{30}+\frac{10}{40}+\frac{1}{50}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}$